Article
Keywords:
distribution; neutrix product; change of variable
Summary:
Let $F$ and $G$ be distributions in $\Cal D'$ and let $f$ be an infinitely differentiable function with $f'(x)>0$, (or $<0$). It is proved that if the neutrix product $F\circ G$ exists and equals $H$, then the neutrix product $F(f)\circ G(f)$ exists and equals $H(f)$.
References:
                        
[1] van der Corput J.G.: 
Introduction to the neutrix calculus. J. Analyse Math. 7 (1959-60), 291-398. 
MR 0124678 | 
Zbl 0097.10503[2] Fisher B.: 
A non-commutative neutrix product of distributions. Math. Nachr. 108 (1982), 117-127. 
Zbl 0522.46025[3] Fisher B.: 
On defining the distribution $\delta ^{(r)}(f(x))$ for summable $f$. Publ. Math. Debrecen 32 (1985), 233-241. 
MR 0834774[4] Fisher B.: 
On the product of distributions and the change of variable. Publ. Math. Debrecen 35 (1988), 37-42. 
MR 0971950 | 
Zbl 0668.46015[5] Fisher B., Özcağ E.: A result on distributions and the change of variable. submitted for publication.