Article
Keywords:
factorization problems; Krull semigroups
Summary:
We introduce relative block semigroups as an appropriate tool for the study of certain phenomena of non-unique factorizations in residue classes. Thereby the main interest lies in rings of integers of algebraic number fields, where certain asymptotic results are obtained.
References:
                        
[1] Geroldinger A.: 
Über nicht-eindeutige Zerlegungen in irreduzible Elemente. Math. Z. 197 (1988), 505-529. 
MR 0932683 | 
Zbl 0618.12002[2] Geroldinger A., Halter-Koch F.: 
Non-unique factorizations in block semigroups and arithmetical applications. Math. Slov., to appear. 
MR 1202179 | 
Zbl 0765.11045[3] Geroldinger A., Halter-Koch F.: 
Realization Theorems for Krull Semigroups. Semigroup Forum 44 (1992), 229-237. 
MR 1141841[5] Halter-Koch F.: 
Ein Approximationssatz für Halbgruppen mit Divisorentheorie. Result. Math. 19 (1991), 74-82. 
MR 1091957 | 
Zbl 0742.20060[6] Halter-Koch F., Müller W.: 
Quantitative aspects of non-unique factorization: A general theory with applications to algebraic function fields. J. Reine Angew. Math. 421 (1991), 159-188. 
MR 1129580[7] Kaczorowski J.: 
Some remarks on factorization in algebraic number fields. Acta Arith. 43 (1983), 53-68. 
MR 0730848 | 
Zbl 0526.12006[8] Narkiewicz N.: 
Finite abelian groups and factorization problems. Coll. Math. 42 (1979), 319-330. 
MR 0567570 | 
Zbl 0514.12004[9] Narkiewicz N.: 
Number Theory. World Scientific, 1983. 
Zbl 1115.11002