Article
Keywords:
units of group algebras; $A$-groups
Summary:
Suppose $F$ is a field of characteristic $p\neq 0$ and $H$ is a $p$-primary abelian $A$-group. It is shown that $H$ is a direct factor of the group of units of the group algebra $F H$.
References:
                        
[F] Fuchs L.: 
Infinite Abelian Groups. Volumes I and II, Academic Press, New York, 1970 and 1973. 
Zbl 0338.20063[H2] Hill P.: 
On the structure of abelian $p$-groups. Trans. Amer. Math. Soc. 288 (1985), 505-525. 
MR 0776390 | 
Zbl 0573.20053[HU] Hill P., Ullery W.: 
A note on a theorem of May concerning commutative group algebras. Proc. Amer. Math. Soc. 110 (1990), 59-63. 
MR 1039530 | 
Zbl 0704.20007[M1] May W.: 
Modular group algebras of totally projective $p$-primary groups. Proc. Amer. Math. Soc. 76 (1979), 31-34. 
MR 0534384 | 
Zbl 0388.20041[M2] May W.: 
Modular group algebras of simply presented abelian groups. Proc. Amer. Math. Soc. 104 (1988), 403-409. 
MR 0962805 | 
Zbl 0691.20008[M] Mollov T.Zh.: 
Ulm invariants of Sylow $p$-subgroups of group algebras of abelian groups over fields of characteristic $p$. Pliska 2 (1981), 77-82. 
MR 0633857[U] Ullery W.: 
An isomorphism theorem for commutative modular group algebras. Proc. Amer. Math. Soc. 110 (1990), 287-292. 
MR 1031452 | 
Zbl 0712.20036[W] Warfield R.: 
A classification theorem for abelian $p$-groups. Trans. Amer. Math. Soc. 210 (1975), 149-168. 
MR 0372071 | 
Zbl 0324.20058