Title:
|
Non-compact perturbations of $m$-accretive operators in general Banach spaces (English) |
Author:
|
Cichoń, Mieczysław |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
33 |
Issue:
|
3 |
Year:
|
1992 |
Pages:
|
403-409 |
. |
Category:
|
math |
. |
Summary:
|
In this paper we deal with the Cauchy problem for differential inclusions governed by $m$-accretive operators in general Banach spaces. We are interested in finding the sufficient conditions for the existence of integral solutions of the problem $x'(t)\in -A x(t)+f(t,x(t))$, $x(0)=x_0$, where $A$ is an $m$-accretive operator, and $f$ is a continuous, but non-compact perturbation, satisfying some additional conditions. (English) |
Keyword:
|
$m$-accretive operators |
Keyword:
|
measures of noncompactness |
Keyword:
|
differential inclusions |
Keyword:
|
semigroups of contractions |
MSC:
|
34A60 |
MSC:
|
34G20 |
MSC:
|
47H06 |
MSC:
|
47H09 |
MSC:
|
47H20 |
MSC:
|
47N20 |
MSC:
|
58D25 |
idZBL:
|
Zbl 0770.58003 |
idMR:
|
MR1209283 |
. |
Date available:
|
2009-01-08T17:56:50Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118509 |
. |
Reference:
|
[1] Banaś J., Goebel K.: Measures of Noncompactness in Banach Spaces.Lecture Notes in Pure and Applied Math. 60, Marcel Dekker, New York-Basel, 1980. MR 0591679 |
Reference:
|
[2] Barbu V.: Nonlinear Semigroups and Differential Equations in Banach Spaces.Noordhoff, Leyden, 1976. Zbl 0328.47035, MR 0390843 |
Reference:
|
[3] Cellina A., Marchi V.: Non-convex perturbations of maximal monotone differential inclusions.Israel J. Math. 46 (1983), 1-11. Zbl 0542.47036, MR 0727019 |
Reference:
|
[4] Cichoń M.: Multivalued perturbations of $m$-accretive differential inclusions in non-separable Banach spaces.Commentationes Math. 32, to appear. MR 1384855 |
Reference:
|
[5] Colombo G., Fonda A., Ornelas A.: Lower semicontinuous perturbations of maximal monotone differential inclusions.Israel J. Math. 61 (1988), 211-218. Zbl 0661.47038, MR 0941237 |
Reference:
|
[6] Daneš J.: Generalized concentrative mappings and their fixed points.Comment. Math. Univ. Carolinae 11 (1970), 115-136. MR 0263063 |
Reference:
|
[7] Goncharov V.V., Tolstonogov A.A.: Mutual continuous selections of multifunctions with non-convex values and its applications.Math. Sb. 182 (1991), 946-969. MR 1128253 |
Reference:
|
[8] Gutman S.: Evolutions governed by $m$-accretive plus compact operators.Nonlinear Anal. Th. Math. Appl. 7 (1983), 707-717. Zbl 0518.34055, MR 0707079 |
Reference:
|
[9] Gutman S.: Existence theorems for nonlinear evolution equations.ibid. 11 (1987), 1193-1206. Zbl 0642.47055, MR 0913678 |
Reference:
|
[10] Martin R.H., Jr.: Nonlinear Operators and Differential Equations in Banach Spaces.John Wiley, New York-London-Sydney-Toronto, 1976. Zbl 0333.47023, MR 0492671 |
Reference:
|
[11] Mitidieri E., Vrabie I.I.: Differential inclusions governed by non convex perturbations of $m$-accretive operators.Differential Integral Equations 2 (1989), 525-531. Zbl 0736.34014, MR 0996758 |
Reference:
|
[12] Schechter E.: Evolution generated by semilinear dissipative plus compact operators.Trans. Amer. Math. Soc. 275 (1983), 297-308. Zbl 0516.34061, MR 0678351 |
Reference:
|
[13] Vrabie I.I.: Compactness Methods for Nonlinear Evolutions.Pitman Monographs and Surveys in Pure and Applied Mathematics 32, Longman, Boston-London-Melbourne, 1987. Zbl 0842.47040, MR 0932730 |
. |