Previous |  Up |  Next

Article

Title: Multipliers of Hankel transformable generalized functions (English)
Author: Betancor, J. J.
Author: Marrero, I.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 33
Issue: 3
Year: 1992
Pages: 389-401
.
Category: math
.
Summary: \font\jeden=rsfs10 Let $\Cal H_{\mu }$ be the Zemanian space of Hankel transformable functions, and let $\Cal H'_{\mu }$ be its dual space. In this paper $\Cal H_{\mu }$ is shown to be nuclear, hence Schwartz, Montel and reflexive. The space $\text{\jeden O}$, also introduced by Zemanian, is completely characterized as the set of multipliers of $\Cal H_{\mu }$ and of $\Cal H'_{\mu }$. Certain topologies are considered on $\Cal O$, and continuity properties of the multiplication operation with respect to those topologies are discussed. (English)
Keyword: multipliers
Keyword: generalized functions
Keyword: Hankel transformation
MSC: 44A05
MSC: 46A11
MSC: 46F10
MSC: 46F12
idZBL: Zbl 0801.46047
idMR: MR1209282
.
Date available: 2009-01-08T17:56:46Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118508
.
Reference: [1] Barros-Neto J.: An Introduction to the Theory of Distributions.R.E. Krieger Publishing Company, Malabar, Florida, 1981. Zbl 0512.46040
Reference: [2] Horvath J.: Topological Vector Spaces and Distributions, Vol. 1.Addison-Wesley, Reading, Massachusetts, 1966. MR 0205028
Reference: [3] Pietsch A.: Nuclear Locally Convex Spaces.Springer-Verlag, Berlin, 1972. Zbl 0308.47024, MR 0350360
Reference: [4] Treves F.: Topological Vector Spaces, Distributions, and Kernels.Academic Press, New York, 1967. Zbl 1111.46001, MR 0225131
Reference: [5] Wong Y.-Ch.: Schwartz Spaces, Nuclear Spaces, and Tensor Products.Lecture Notes in Math. 726, Springer-Verlag, Berlin, 1979. Zbl 0413.46001, MR 0541034
Reference: [6] Zemanian A.H.: The Hankel transformation of certain distributions of rapid growth.SIAM J. Appl. Math. 14 (1966), 678-690. Zbl 0154.13804, MR 0211211
Reference: [7] Zemanian A.H.: Generalized Integral Transformations.Interscience, New York, 1968. Zbl 0643.46029, MR 0423007
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_33-1992-3_3.pdf 237.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo