Article
Keywords:
Hahn-Banach extension property; topological vector space
Summary:
An elementary construction for an abundance of vector topologies $\xi $ on a fixed infinite dimensional vector space $E$ such that $(E,\xi )$ has not the Hahn-Banach extension property but the topological dual $(E,\xi )'$ separates points of $E$ from zero is given.
References:
[1] Duren P.L., Romberg R.C., Shields A.L.:
Linear functionals in $H^p$-spaces with $0. J. Reine Angew. Math. 238 (1969), 32-60. MR 0259579
[2] Kalton N.J.:
Basic sequences in $F$-spaces and their applications. Proc. Edinburgh Math. Soc. 19 (1974), 151-167.
MR 0415259 |
Zbl 0296.46010
[3] Kakol J.:
Nonlocally convex spaces and the Hahn-Banach extension property. Bull. Acad. Polon. Sci. 33 (1985), 381-393.
MR 0821575 |
Zbl 0588.46004
[4] Klee V.:
Exotic topologies for linear spaces. Proc. Symposium on General Topology and its Relations to Modern Algebra, Prague, 1961.
MR 0154088 |
Zbl 0111.10701
[5] Shapiro J.H.:
Examples of proper closed weakly dense subspaces in non-locally convex $F$-spaces. Israel J. Math. 7 (1969), 369-380.
MR 0257696 |
Zbl 0202.39303