Previous |  Up |  Next

Article

Keywords:
Hahn-Banach extension property; topological vector space
Summary:
An elementary construction for an abundance of vector topologies $\xi $ on a fixed infinite dimensional vector space $E$ such that $(E,\xi )$ has not the Hahn-Banach extension property but the topological dual $(E,\xi )'$ separates points of $E$ from zero is given.
References:
[1] Duren P.L., Romberg R.C., Shields A.L.: Linear functionals in $H^p$-spaces with $0. J. Reine Angew. Math. 238 (1969), 32-60. MR 0259579
[2] Kalton N.J.: Basic sequences in $F$-spaces and their applications. Proc. Edinburgh Math. Soc. 19 (1974), 151-167. MR 0415259 | Zbl 0296.46010
[3] Kakol J.: Nonlocally convex spaces and the Hahn-Banach extension property. Bull. Acad. Polon. Sci. 33 (1985), 381-393. MR 0821575 | Zbl 0588.46004
[4] Klee V.: Exotic topologies for linear spaces. Proc. Symposium on General Topology and its Relations to Modern Algebra, Prague, 1961. MR 0154088 | Zbl 0111.10701
[5] Shapiro J.H.: Examples of proper closed weakly dense subspaces in non-locally convex $F$-spaces. Israel J. Math. 7 (1969), 369-380. MR 0257696 | Zbl 0202.39303
[6] Wilansky A.: Topics in Functional Analysis. Springer Verlag 45 (1967). MR 0223854 | Zbl 0156.36103
Partner of
EuDML logo