Previous |  Up |  Next

Article

Title: Strong unicity criterion in some space of operators (English)
Author: Lewicki, Grzegorz
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 1
Year: 1993
Pages: 81-87
.
Category: math
.
Summary: \font\muj=rsfs10 \font\mmuj=rsfs8 Let $X$ be a finite dimensional Banach space and let $Y\subset X$ be a hyperplane. Let $\text{\mmuj L}\,_Y=\{L\in \text{\mmuj L}\,(X,Y):L\mid _Y=0\}$. In this note, we present sufficient and necessary conditions on $L_0\in \text{\mmuj L}\,_Y$ being a strongly unique best approximation for given $L\in \text{\mmuj L}\,(X)$. Next we apply this characterization to the case of $X=l_\infty ^n$ and to generalization of \linebreak Theorem I.1.3 from [12] (see also [13]). (English)
Keyword: best approximation
Keyword: strongly unique best approximation
Keyword: approximation in spaces of linear operators
MSC: 41A35
MSC: 41A50
MSC: 41A52
MSC: 41A65
MSC: 46B99
idZBL: Zbl 0785.41023
idMR: MR1240206
.
Date available: 2009-01-08T18:01:18Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118558
.
Reference: [1] Baronti M., Franchetti C.: Minimal and polar projections onto hyperplanes in the space $l^p$ and $l_\infty $.to appear.
Reference: [2] Baronti M., Papini P.L.: Norm one projections onto subspaces of $l^p$.Ann. Mat. Pura Appl. IV (1988), 53-61. MR 0980971
Reference: [3] Bartelt M.W., McLaughlin H.W.: Characterizations of strong unicity in approximation theory.Jour. Approx. Th. 9 (1973), 255-266. Zbl 0273.41019, MR 0372500
Reference: [4] Bartelt M.W., Schmidt D.P.: On Poreda's problem on the strong unicity constants.Jour. Approx. Th. 33 (1981), 69-79. Zbl 0478.41024, MR 0639222
Reference: [5] Blatter J., Cheney E.W.: Minimal projections onto hyperplanes in sequence spaces.Ann. Mat. Pura Appl. 101 (1974), 215-227. MR 0358179
Reference: [6] Cheney E.W.: Introduction to Approximation Theory.McGraw-Hill, New York, 1966. Zbl 0912.41001, MR 0222517
Reference: [7] Franchetti C.: Projections onto hyperplanes in Banach spaces.Jour. Approx. Th. 38 (1983), 319-333. Zbl 0516.41028, MR 0711458
Reference: [8] Chalmers B.L., Metcalf F.T., Taylor G.D.: Strong unicity of arbitrary rate.Jour. Approx. Th. 37 (1983), 238-245. Zbl 0517.41031, MR 0693010
Reference: [9] Laurent P.J.: Approximation et Optimisation.Hermann, Paris, 1972. Zbl 0238.90058, MR 0467080
Reference: [10] Lewicki G.: Kolgomorov's type criteria for spaces of compact operators.Jour. Approx. Th. 64 (1991), 181-202. MR 1091468
Reference: [11] Newman D.J., Shapiro H.S.: Some theorems on Chebyshev approximations.Duke Math. J. 30 (1963), 673-681. MR 0156138
Reference: [12] Odyniec Wł., Lewicki G.: Minimal Projections in Banach Spaces.Lecture Notes in Math., vol. 1449 (1990), Springer-Verlag. Zbl 1062.46500, MR 1079547
Reference: [13] Odyniec Wł.: The uniqueness of minimal projection (in Russian).Izv. Vyss. Ucebn. Zavied. Matematika 3 (1978), 73-75. MR 0626041
Reference: [14] Smarzewski R.: Strongly unique best approximation in Banach spaces.Jour. Approx. Th. 47 (1986), 184-194. Zbl 0615.41027, MR 0847538
Reference: [15] Sudolski J., Wȯjcik A.: Some remarks on strong uniqueness of best approximation.Approx. Theory and its Appl. 6 (2), June 1990, 44-78. MR 1078687
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-1_9.pdf 199.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo