Previous |  Up |  Next

Article

Keywords:
semiring; additive endomorphism
Summary:
A ring or an idempotent semiring is associative provided that additive endomorphisms are multiplicative.
References:
[1] Birkenmeier G., Heatherly H.: Rings whose additive endomorphisms are ring endomorphisms. Bull. Austral. Math. Soc. 42 (1990), 145-152. MR 1066370 | Zbl 0703.16006
[2] Dhompongsa S., Sanwong J.: Rings in which additive mappings are multiplicative. Studia Sci. Math. Hungar. 22 (1987), 357-359. MR 0932222 | Zbl 0647.16028
[3] Dugas M., Hausen J., Johnson J.A.: Rings whose additive mappings are multiplicative. Periodica Math. Hungar. 23 (1991), 65-73.
[4] Feigelstock S.: Rings whose additive endomorphisms are multiplicative. Periodica Math. Hungar. 19 (1988), 257-260. MR 0984775 | Zbl 0671.16016
[5] Feigelstock S.: Additive group of rings. Vol. II, Pitman Research Notes in Math., Series 169, Longman Scient. & Techn., New York, 1988. MR 0940015
[6] Hirano Y.: On rings whose additive endomorphisms are multiplicative. Periodica Math. Hungar. 23 (1991), 87-89. MR 1141355 | Zbl 0754.16002
[7] Ježek J., Kepka T., Němec P.: Distributive groupoids. Rozpravy ČSAV 91/3 (1981). MR 0672563
[8] Kepka T.: On a class of non-associative rings. Comment. Math. Univ. Carolinae 18 (1977), 265-279. MR 0460393 | Zbl 0366.17016
[9] Kim K.H., Roush F.W.: Additive endomorphisms of rings. Periodica Math. Hungar. 12 (1981), 241-242. MR 0642635 | Zbl 0451.16014
[10] Sullivan R.P.: Research problem no. 23. Periodica Math. Hungar. 8 (1977), 313-314. Zbl 0376.16034
Partner of
EuDML logo