Previous |  Up |  Next

Article

Title: Existence results for differential equations in Banach spaces (English)
Author: Lee, John W.
Author: O'Regan, Donal
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 2
Year: 1993
Pages: 239-251
.
Category: math
.
Summary: This paper presents existence results for initial and boundary value problems for nonlinear differential equations in Banach spaces. (English)
Keyword: existence
Keyword: initial value problems
Keyword: boundary value problems
Keyword: abstract spaces
MSC: 34A10
MSC: 34A12
MSC: 34B15
MSC: 34G10
MSC: 34G20
idZBL: Zbl 0786.34069
idMR: MR1241733
.
Date available: 2009-01-08T18:03:04Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118577
.
Reference: [1] Banas J., Goebel K.: Measures and Noncompactness in Banach Spaces.Dekker, New York, Basel, 1980. MR 0591679
Reference: [2] Bobisud L.E., O'Regan D.: Existence of solutions to some singular initial value problems.J. Math. Anal. Appl. 133 (1988), 135-149. Zbl 0646.34003, MR 0960387
Reference: [3] Dugundji J., Granas A.: Fixed Point Theory.Monographie Matematyczne, PNW Warszawa, 1982. Zbl 1025.47002
Reference: [4] Dunford N., Schwartz J.T.: Linear Operators Part I: General Theory.Interscience Publishers, New York, 1967. Zbl 0635.47001, MR 1009162
Reference: [5] Frigon M., Granas A., Guennoun Z.: Sur l'intervalle maximal d'existence de solutions pour des inclusions différentielles.C.R. Acad. Sci., Paris 306 (1988), 747-750. Zbl 0643.34015, MR 0948766
Reference: [6] Granas A., Guenther R.B., Lee J.W.: Some general existence principles in the Carathéodory theory of nonlinear differential systems.J. Math. Pures Appl. 70 (1991), 153-196. Zbl 0687.34009, MR 1103033
Reference: [7] Granas A., Guenther R.B., Lee J.W.: Existence principles for classical and Carathéodory solutions for systems of ordinary differential equations.Proc. Inter. Conf. on Theory and Appl. of Diff. Eq., Ohio Univ. Press, Athens, Ohio, 1988, 353-364. MR 1026162
Reference: [8] Lee J.W., O'Regan D.: Nonlinear boundary value problems in Hilbert spaces.J. Math. Anal. Appl. 137 (1989), 59-69. Zbl 0672.34056, MR 0981923
Reference: [9] Lee J.W., O'Regan D.: Topological transversality: Applications to initial value problems.Ann. Polonici Math. 48 (1988), 31-36. Zbl 0674.34006, MR 0978675
Reference: [10] Lee J.W., O'Regan D.: Existence of solutions for nonlinear differential delay equations in Banach and Hilbert spaces.Nonlinear Analysis, to appear.
Reference: [11] O'Farrell A., O'Regan D.: Existence results for initial and boundary value problems.Proc. Amer. Math. Society 110 (1990), 661-673.
Reference: [12] O'Regan D.: A note on the application of topological transversality to nonlinear differential equations in Hilbert spaces.Rocky Mountain J. Math. 18 (1988), 801-811. Zbl 0684.34063, MR 1002176
Reference: [13] O'Regan D.: Second and higher order systems of boundary value problems.J. Math. Anal. Appl. 15 (1991), 120-149. Zbl 0744.34024
Reference: [14] O'Regan D.: Boundary value problems for second and higher order differential equations.Proc. Amer. Math. Soc. 113 (1991), 761-776. Zbl 0742.34023, MR 1069295
Reference: [15] Martin R.H.: Nonlinear Operators and Differential Equations in Banach Spaces.Wiley, New York, 1976. Zbl 0333.47023, MR 0492671
Reference: [16] Wintner A.: The nonlocal existence problem for ordinary differential equations.Amer. J. Math. 67 (1945), 277-284. MR 0011858
Reference: [17] Yoshida K.: Functional Analysis.Springer Verlag, Berlin, 1965.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-2_7.pdf 249.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo