Previous |  Up |  Next

Article

Title: Non-commutative Gelfand-Naimark theorem (English)
Author: Migda, Janusz
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 2
Year: 1993
Pages: 253-255
.
Category: math
.
Summary: We show that if Y is the Hausdorffization of the primitive spectrum of a $C^{\ast }$-algebra $A$ then $A$ is $\ast $-isomorphic to the $C^{\ast }$-algebra of sections vanishing at infinity of the canonical $C^{\ast }$-bundle over $Y$. (English)
Keyword: $C^{\ast }$-algebra
Keyword: $C^{\ast }$-bundle
Keyword: sectional representation
MSC: 46L05
MSC: 46L85
idZBL: Zbl 0809.46057
idMR: MR1241734
.
Date available: 2009-01-08T18:03:09Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118578
.
Reference: [1] Dauns J., Hofmann K.H.: Representation of rings by sections.Mem. Amer. Math. Soc. 83 (1968). Zbl 0174.05703, MR 0247487
Reference: [2] Dixmier J.: Les $C^{\ast }$-algèbres et leurs representations.Gauthier-Villars, Paris, 1969. Zbl 0288.46055, MR 0246136
Reference: [3] Dupre M.J., Gillette M.R.: Banach bundles, Banach modules and automorphisms of $C^{\ast }$- algebras.Research Notes in Math. 92, Pitman Advanced Publishing Program, Boston- London-Melbourne, 1983. Zbl 0536.46048, MR 0721812
Reference: [4] Fell J.M.G.: The structure of algebras of operator fields.Acta Math. 106 (1961), 233-280. Zbl 0101.09301, MR 0164248
Reference: [5] Fell J.M.G.: An extension of Macley's method to Banach $\ast $-algebraic bundles.Mem. Amer. Math. Soc. 90 (1969). MR 0259619
Reference: [6] Tomiyama J.: Topological representations of $C^{\ast }$-algebras.Tohôku Math. J. 14 (1962), 187-204. MR 0143053
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-2_8.pdf 169.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo