Previous |  Up |  Next

Article

Title: On zeros and fixed points of multifunctions with non-compact convex domains (English)
Author: Park, Sehie
Author: Bae, Jong Sook
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 2
Year: 1993
Pages: 257-264
.
Category: math
.
Summary: Using our own generalization [7] of J.C. Bellenger's theorem [1] on the existence of maximizable u.s.c\. quasiconcave functions on convex spaces, we obtain extended versions of the existence theorem of H. Ben-El-Mechaiekh [2] on zeros for multifunctions with non-compact domains, the coincidence theorem of S.H. Kum [5] for upper hemicontinuous multifunctions, and the Ky Fan type fixed point theorems due to E. Tarafdar [13]. (English)
Keyword: convex space
Keyword: $c$-compact set
Keyword: real Hausdorff topological vector space (t.v.s.)
Keyword: linear operator
Keyword: locally convex
Keyword: fixed point
Keyword: coincidence
Keyword: zero
Keyword: upper hemicontinuous (u.h.c.) multifunction
MSC: 47H04
MSC: 47H10
idZBL: Zbl 0834.47050
idMR: MR1241735
.
Date available: 2009-01-08T18:03:14Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118579
.
Reference: [1] Bellenger J.C.: Existence of maximizable quasiconcave functions on paracompact convex spaces.J. Math. Anal. Appl. 123 (1987), 333-338. Zbl 0649.46006, MR 0883692
Reference: [2] Ben-El-Mechaiekh H.: Zeros for set-valued maps with non-compact domains.C. R. Math. Rep. Acad. Sci. Canada 12 (1990), 125-130. Zbl 0734.47028, MR 1070423
Reference: [3] Ky Fan: Some properties of convex sets related to fixed point theorems.Math. Ann. 266 (1984), 519-537. Zbl 0515.47029, MR 0735533
Reference: [4] Jiang J.: Fixed point theorems for paracompact convex sets.Acta Math. Sinica 4 (1988), 64-71. Zbl 0715.54032, MR 0953351
Reference: [5] Kum S.H.: Ph.D. Dissertation, Seoul National University, 1991..
Reference: [6] Lassonde M.: On the use of KKM multifunctions in fixed point theory and related topics.J. Math. Anal. Appl. 97 (1983), 151-201. Zbl 0527.47037, MR 0721236
Reference: [7] Park S., Bae J.S.: Existence of maximizable quasiconcave functions on convex spaces.J. Korean Math. Soc. 28 (1991), 285-292. Zbl 0756.47050, MR 1127833
Reference: [8] Park S.: Applications of maximizable linear functionals on convex sets.``Proc. in Honor of C. N. Lee'', 537-548, 1991.
Reference: [9] Park S.: Fixed point theory of multifunctions in topological vector spaces.J. Korean Math. Soc. 29 (1992), 191-208. Zbl 0758.47048, MR 1157308
Reference: [10] Park S.: Generalized matching theorems for closed coverings of convex sets.Numer. Funct. Anal. and Optimiz. 11 (1990), 101-110. Zbl 0706.52001, MR 1058779
Reference: [11] Shih M.-H., Tan K.-K.: Covering theorems of convex sets related to fixed-point theorem.in ``Nonlinear and Convex Analysis (Proc. in Honor of Ky Fan)'' (B.-L. Lin and S. Simons, eds.), 235-244, Marcel Dekker, Inc., New York, 1987. MR 0892795
Reference: [12] Simons S.: On existence theorem for quasiconcave functions with applications.Nonlinear Anal. TMA 10 (1986), 1133-1152. MR 0857745
Reference: [13] Tarafdar E.: An extension of Fan's fixed point theorem and equilibrium point of an abstract economy.Comment. Math. Univ. Carolinae 31 (1990), 723-730. Zbl 0745.47046, MR 1091369
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-2_9.pdf 198.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo