Previous |  Up |  Next

Article

Title: Contact manifolds, harmonic curvature tensor and $(k,\mu )$-nullity distribution (English)
Author: Papantoniou, Basil J.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 2
Year: 1993
Pages: 323-334
.
Category: math
.
Summary: In this paper we give first a classification of contact Riemannian manifolds with harmonic curvature tensor under the condition that the characteristic vector field $\xi $ belongs to the $(k,\mu )$-nullity distribution. Next it is shown that the dimension of the $(k,\mu )$-nullity distribution is equal to one and therefore is spanned by the characteristic vector field $\xi $. (English)
Keyword: contact Riemannian manifold
Keyword: harmonic curvature
Keyword: $D$-homothetic deformation
MSC: 53C05
MSC: 53C15
MSC: 53C20
MSC: 53C21
MSC: 53C25
idZBL: Zbl 0782.53024
idMR: MR1241740
.
Date available: 2009-01-08T18:03:40Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118584
.
Reference: [1] Baikoussis C., Koufogiorgos T.: On a type of contact manifolds.to appear in Journal of Geometry. MR 1205692
Reference: [2] Blair D.E.: Contact manifolds in Riemannian geometry.Lecture Notes in Mathematics 509, Springer-Verlag, Berlin, 1979. Zbl 0319.53026, MR 0467588
Reference: [3] Blair D.E.: Two remarks on contact metric structures.Tôhoku Math. J. 29 (1977), 319-324. Zbl 0376.53021, MR 0464108
Reference: [4] Blair D.E., Koufogiorgos T., Papantoniou B.J.: Contact metric manifolds with characteristic vector field satisfying $R(X,Y)\xi =k(\eta (Y)X-\eta (X)Y)+\mu (\eta (Y)hX-\eta (X)hY)$.submitted.
Reference: [5] Deng S.R.: Variational problems on contact manifolds.Thesis, Michigan State University, 1991.
Reference: [6] Koufogiorgos T.: Contact metric manifolds.to appear in Annals of Global Analysis and Geometry. MR 1201408
Reference: [7] Tanno S.: Ricci curvatures of contact Riemannian manifolds.Tôhoku Math J. 40 (1988), 441-448. Zbl 0655.53035, MR 0957055
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-2_14.pdf 215.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo