Previous |  Up |  Next

Article

Title: Some remarks on the regularity of minimizers of integrals with anisotropic growth (English)
Author: Bhattacharya, Tilak
Author: Leonetti, Francesco
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 4
Year: 1993
Pages: 597-611
.
Category: math
.
Summary: We prove higher integrability for minimizers of some integrals of the calculus of variations; such an improved integrability allows us to get existence of weak second derivatives. (English)
Keyword: regularity
Keyword: minimizers
Keyword: integral functionals
Keyword: anisotropic growth
MSC: 35J35
MSC: 35J60
MSC: 49N60
idZBL: Zbl 0794.49034
idMR: MR1263791
.
Date available: 2009-01-08T18:06:47Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118619
.
Reference: [1] Acerbi E., Fusco N.: Partial regularity under anisotropic $(p,q)$ growth conditions.J. Differential Equations, to appear. Zbl 0807.49010, MR 1260848
Reference: [2] Acerbi E., Fusco N.: Regularity for minimizers of non-quadratic functionals: the case $1< p< 2$.J. Math. Anal. Appl. 140 (1989), 115-135. Zbl 0686.49004, MR 0997847
Reference: [3] Adams R.A.: Sobolev Spaces.New York, 1975. Zbl 1098.46001, MR 0450957
Reference: [4] Bhattacharya T., Leonetti F.: $W^{2,2}$ regularity for weak solutions of elliptic systems with nonstandard growth.J. Math. Anal. Appl. 176 (1993), 224-234. MR 1222166
Reference: [5] Campanato S.: Sistemi ellittici in forma divergenza. Regolarità all'interno..Pisa, 1980. Zbl 0453.35026, MR 0668196
Reference: [6] Campanato S., Cannarsa P.: Differentiability and partial Hölder continuity of the solutions of nonlinear elliptic systems of order $2m$ with quadratic growth.Ann. Scuola Norm. Sup. Pisa 8 (1981), 285-309. MR 0623938
Reference: [7] Campanato S.: Hölder continuity of the solutions of some nonlinear elliptic systems.Adv. in Math. 48 (1983), 16-43. Zbl 0519.35027, MR 0697613
Reference: [8] Fusco N., Sbordone C.: Local boundedness of minimizers in a limit case.Manuscripta Math. 69 (1990), 19-25. Zbl 0722.49012, MR 1070292
Reference: [9] Fusco N., Sbordone C.: Some remarks on the regularity of minima of anisotropic integrals.Comm. P.D.E. 18 (1993), 153-167. Zbl 0795.49025, MR 1211728
Reference: [10] Giaquinta M.: Growth conditions and regularity, a counterexample.Manuscripta Math. 59 (1987), 245-248. Zbl 0638.49005, MR 0905200
Reference: [11] Giaquinta M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems.Princeton, 1983. Zbl 0516.49003, MR 0717034
Reference: [12] Leonetti F.: Weak differentiability for solutions to nonlinear elliptic systems with p,q-growth conditions.Ann. Mat. Pura Appl. 162 (1992), 349-366. Zbl 0801.35023, MR 1199662
Reference: [13] Leonetti F.: Higher integrability for minimizers of integral functionals with nonstandard growth.J. Differential Equations, to appear. Zbl 0813.49030, MR 1293473
Reference: [14] Marcellini P.: Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions.Arch. Rational Mech. Anal. 105 (1989), 267-284. MR 0969900
Reference: [15] Marcellini P.: Un example de solution discontinue d'un problème variationnel dans ce cas scalaire.preprint Istituto Matematico ``U. Dini'' Universita' di Firenze, 1987/88, n.11.
Reference: [16] Troisi M.: Teoremi di inclusione per spazi di Sobolev non isotropi.Ricerche di Mat. 18 (1969), 3-24. Zbl 0182.16802, MR 0415302
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-4_1.pdf 239.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo