Previous |  Up |  Next

Article

Title: On variational approach to the Hamilton-Jacobi PDE (English)
Author: Chabrowski, J.
Author: Zhang, Kewei
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 4
Year: 1993
Pages: 613-633
.
Category: math
.
Summary: In this paper we construct a minimizing sequence for the problem (1). In particular, we show that for any subsolution of the Hamilton-Jacobi equation $(\ast )$ there exists a minimizing sequence weakly convergent to this subsolution. The variational problem (1) arises from the theory of computer vision equations. (English)
Keyword: Young measures
Keyword: computer vision equations
MSC: 35E99
MSC: 35F20
MSC: 49L20
MSC: 49L99
MSC: 49R50
idZBL: Zbl 0802.49021
idMR: MR1263792
.
Date available: 2009-01-08T18:06:52Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118620
.
Reference: [DA] Adams R.A.: Sobolev spaces.Academic Press New York (1975). Zbl 0314.46030, MR 0450957
Reference: [BA] Ball J.M.: A version of the fundamental theorem for Young measures.Lecture Notes in Physics, Springer Verlag 344 (1988), 207-215. MR 1036070
Reference: [BL] Berliochi H., Lasry J.M.: Intégrandes normales et mesures parametrées en calcul des variations.(1973), 101 Bull. Soc. Math. France. MR 0344980
Reference: [BCK1] Brooks M.J., Chojnacki W., Kozera R.: Shading without shape.Quarterly of Appl. Math., in press. Zbl 0763.35103, MR 1146621
Reference: [BCK2] Brooks M.J., Chojnacki W., Kozera R.: Circularly-symmetric eikonal equations and non-uniqueness in computer vision.J. Math. Analysis and Appl., in press. Zbl 0799.35036
Reference: [BR] Anna R. Bruss: The eikonal equation: some results applicable to computer vision.J. Math. Phys. (1982), 23(5) 890-896. MR 0655907
Reference: [CZ1] Chabrowski J., Zhang K.: On shape from shading problem.Functional Analysis, Approximation Theory and Numerical Analysis, to appear in: Volume 1 dedicated to S. Banach, S. Ulam and A. Ostrowski, World Scientific Publishing, Singapore. Zbl 0878.35026, MR 1298653
Reference: [CZ2] Chabrowski J., Zhang K.: On variational approach to photometric stereo.Ann. de l'Institut H. Poincaré, Analyse non linéaire, in press. Zbl 0821.49027
Reference: [DA] Dacorogna B.: Direct methods in the calculus of variations.Applied Mathematical Sciences 78 Springer Verlag, Berlin - Heidelberg (1989). Zbl 0703.49001, MR 0990890
Reference: [DS] Deift P., Sylvester J.: Some remarks on the shape-from-shading problem in computer vision.J. Math. Anal. Appl. (1982), 84(1) 235-248. MR 0639534
Reference: [ET] Ekeland I., Temam R.: Analyse convexe et problèmes variationnels.Dunod Paris (1974). Zbl 0281.49001, MR 0463993
Reference: [EV] Lawrence C. Evans: Weak convergence methods for nonlinear partial differential equations.CBMS Regional Conference Series in Mathematics (74) Amer. Math. Soc. MR 1034481
Reference: [KG] Kohn R.V., Strang G.: Optimal design and relaxation of variational problems, I.(1986), 39 Comm. Pure and Applied Math. 113-137. Zbl 0609.49008, MR 0820342
Reference: [KO] Kozera R.: Existence and uniqueness in photometric stereo.Applied Mathematics and Computation (1991), 44(1) 1-103. Zbl 0732.53005, MR 1110435
Reference: [TA] Tartar L.: Compensated compactness.Heriot-Watt Symposium (1978), 4.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-4_2.pdf 278.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo