Previous |  Up |  Next

Article

Title: Entropies of self-mappings of topological spaces with richer structures (English)
Author: Katětov, Miroslav
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 4
Year: 1993
Pages: 747-768
.
Category: math
.
Summary: For mappings $f\,:\, S\rightarrow S$, where $S$ is a merotopic space equipped with a diameter function, we introduce and examine an entropy, called the $\delta $-entropy. The topological entropy and the entropy of self-mappings of metric spaces are shown to be special cases of the $\delta $-entropy. Some connections with other characteristics of self-mappings are considered. We also introduce and examine an entropy for subsets of $S^N$, which is closely connected with the $\delta $-entropy of $f\,:\, S\rightarrow S$. (English)
Keyword: entropy
Keyword: merotopic space
Keyword: self-mapping
Keyword: diameter function
MSC: 54C70
MSC: 54E17
idZBL: Zbl 0839.54022
idMR: MR1263803
.
Date available: 2009-01-08T18:08:00Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118631
.
Reference: [AKM65] Adler K.A, Kohnheim A., McAndrew M.: Topological entropy.Trans. Amer. Math. Soc. 114 (1965), 309-319. MR 0175106
Reference: [B71] Bowen R.: Entropy for group endomorphisms and homogeneous spaces.Trans. Amer. Math. Soc. 153 (1971), 401-414. Zbl 0212.29201, MR 0274707
Reference: [B73] Bowen R.: Topological entropy for noncompact sets.Trans. Amer. Math. Soc. 184 (1973), 125-156. MR 0338317
Reference: [F62] Frolík Z.: A characterization of topologically complete spaces in the sense of E. Čech in terms of convergence of functions.Czechoslovak Math. J. 13 (88) (1962), 148-151. MR 0155290
Reference: [H74] Herrlich H.: Topological structures.Proc. Sympos. in honour of J. de Groot, pp. 59-122, Math. Centre Tracts, no. 52, Math. Centrum, Amsterdam, 1974. Zbl 0589.54018, MR 0358706
Reference: [H82] Herrlich H.: Categorical topology 1971-1981.Proc. Fifth Prague Topological Sympos. 1981, pp. 279-383; Heldermann, Berlin, 1982. Zbl 0502.54001, MR 0698425
Reference: [K76] Katětov M.: Spaces defined by giving a family of centered systems (in Russian).Uspehi Mat. Nauk 31 (1976), no. 5 (191), 95-107 Russian Math. Surveys 31, (1976), 111-123. MR 0448278
Reference: [K90] Katětov M.: On entropy-like functionals and codes for metrized probability spaces I.Comment. Math. Univ. Carolinae 31 (1990), 49-66. MR 1056171
Reference: [K92a] Katětov M.: On entropy-like functionals and codes for metrized probability spaces II.Comment. Math. Univ. Carolinae 33 (1992), 79-95. MR 1173750
Reference: [K92b] Katětov M.: Entropy-like functionals: conceptual background and some results.Comment. Math. Univ. Carolinae 33 (1992), 645-660. MR 1240186
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-4_13.pdf 343.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo