Previous |  Up |  Next

Article

Title: Boundedness and pointwise differentiability of weak solutions to quasi-linear elliptic differential equations and variational inequalities (English)
Author: Ježková, Jana
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 1
Year: 1994
Pages: 63-80
.
Category: math
.
Summary: The local boundedness of weak solutions to variational inequalities (obstacle problem) with the linear growth condition is obtained. Consequently, an analogue of a theorem by Reshetnyak about a.e\. differentiability of weak solutions to elliptic divergence type differential equations is proved for variational inequalities. (English)
Keyword: quasi-linear elliptic equations and inequalities
Keyword: weak solution
Keyword: local boundedness
Keyword: pointwise differentiability
Keyword: difference quotient
MSC: 35B65
MSC: 35D10
MSC: 35J60
MSC: 35J85
MSC: 35R45
idZBL: Zbl 0803.35061
idMR: MR1292584
.
Date available: 2009-01-08T18:08:51Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118642
.
Reference: [1] Bojarski B.: Pointwise differentiability of weak solutions of elliptic divergence type equations.Bull. Acad. Polon. Sci. 33 (1985), 1-6. Zbl 0572.35011, MR 0798721
Reference: [2] Federer H.: Geometric Measure Theory.Springer-Verlag, Berlin-Heidelberg-New York, 1969. Zbl 0874.49001, MR 0257325
Reference: [3] Giaquinta M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems.Princeton University Press, Princeton, New Jersey, 1983. Zbl 0516.49003, MR 0717034
Reference: [4] Hajłasz P., Strzelecki P.: A new proof of Reshetnyak's theorem concerning the pointwise differentiability of solution of quasilinear equations.Preprint, Institute of Mathematics, Warsaw University, PKIN IXp., 00-901 Warsaw.
Reference: [5] Ladyzhenskaya O.A., Ural'tseva N.N.: Linear and Quasilinear Elliptic Equations.2nd ed., Nauka Press, Moscow, 1973, English translation Academic Press, New York, 1968. Zbl 0177.37404, MR 0244627
Reference: [6] Moser J.: A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations.Comm. Pure Appl. Math. XIII (1960), 457-468. Zbl 0111.09301, MR 0170091
Reference: [7] Moser J.: On Harnack's theorem for elliptic differential equations.Comm. Pure Appl. Math. XIV (1961), 577-591. Zbl 0111.09302, MR 0159138
Reference: [8] Reshetnyak Yu.G.: Generalized derivatives and differentiability almost everywhere.Mat. Sb. 75 (117) (1968), 323-334 (in Russian) Math. USSR-Sb. 4 (1968), 293-302 (English translation). Zbl 0176.12001, MR 0225159
Reference: [9] Reshetnyak Yu.G.: O differentsiruemosti pochti vsyudu resheniĭ ellipticheskikh uravneniĭ.Sibirsk. Mat. Zh. XXVIII (1987), 193-195. MR 0906049
Reference: [10] Serrin J.: Local behavior of solutions of quasi-linear equations.Acta Math. 111 (1964), 247-302. Zbl 0128.09101, MR 0170096
Reference: [11] Stepanoff M.W.: Sur les conditions de l'existence de la différentielle totale.Matematiceskij Sbornik, Rec. Math. Soc. Math. Moscou XXXII (1925), 511-527.
Reference: [12] Ziemer W.P.: Weakly Differentiable Functions.Springer-Verlag, Berlin-Heidelberg-New York, 1989. Zbl 0692.46022, MR 1014685
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-1_8.pdf 273.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo