Previous |  Up |  Next

Article

Title: Notes on approximation in the Musielak-Orlicz spaces of vector multifunctions (English)
Author: Kasperski, Andrzej
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 1
Year: 1994
Pages: 81-93
.
Category: math
.
Summary: We introduce the spaces $M^{1}_{Y,\varphi }$, $M^{o,n}_{Y,\varphi }$, $\tilde{M}^{o}_{Y,\varphi }$ and $M^{o}_{Y,\bold d,\varphi }$ of multifunctions. We prove that the spaces $M^{1}_{Y,\varphi }$ and $M^{o}_{Y,\bold d,\varphi }$ are complete. Also, we get some convergence theorems. (English)
Keyword: Musielak-Orlicz space
Keyword: multifunction
Keyword: modular space of multifunctions
Keyword: integral operator
Keyword: modular approximation
MSC: 28B20
MSC: 46A80
MSC: 46E30
MSC: 46E99
idZBL: Zbl 0809.46022
idMR: MR1292585
.
Date available: 2009-01-08T18:08:55Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118643
.
Reference: [1] Kasperski A.: Modular approximation in $\utilde{X}_{\varphi }$ by a filtered family of dist-sublinear operators and dist-convex operators.Mathematica Japonica 38 (1993), 119-125. MR 1204190
Reference: [2] Kasperski A.: Notes on approximation in the Musielak-Orlicz spaces of multifunctions.Commentationes Math., in print.
Reference: [3] Musielak J.: Modular approximation by a filtered family of linear operators.Functional Analysis and Approximation, Proc. Conf. Oberwolfach, August 9-16, 1980; Birkhäuser Verlag, Basel, 1981, pp. 99-110. Zbl 0471.46017, MR 0650267
Reference: [4] Musielak J.: Orlicz spaces and Modular spaces.Lecture Notes in Mathematics Vol. 1034, Springer-Verlag, Berlin, 1983. Zbl 0557.46020, MR 0724434
Reference: [5] Wisła M.: On completeness of Musielak-Orlicz spaces.Chin. Ann. of Math. 10B(3) (1989), 292-300. MR 1027668
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-1_9.pdf 233.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo