Previous |  Up |  Next

Article

Title: Rectangular covers of products missing diagonals (English)
Author: Yajima, Yukinobu
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 1
Year: 1994
Pages: 147-153
.
Category: math
.
Summary: We give a characterization of a paracompact $\Sigma$-space to have a $G_\delta$-diagonal in terms of three rectangular covers of $X^2\setminus\Delta$. Moreover, we show that a local property and a global property of a space $X$ are given by the orthocompactness of $(X\times\beta X)\setminus\Delta$. (English)
Keyword: $\Sigma$-space
Keyword: $G_\delta$-diagonal
Keyword: $\sigma$-closure-preserving
Keyword: $\sigma$-cushioned
Keyword: rectangular cover
Keyword: \newline orthocompact
Keyword: metacompact
Keyword: Fréchet space
MSC: 54B10
MSC: 54D20
MSC: 54E18
idZBL: Zbl 0804.54010
idMR: MR1292590
.
Date available: 2009-01-08T18:09:29Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118648
.
Reference: [1] Arhangel'skiĭ A.V., Kombarov A.P.: On $\nabla$-normal spaces.Topology and Appl. 35 (1990), 121-126. MR 1058792
Reference: [2] Chaber J., Čoban M., Nagami N.: On monotonic generalizations of Moore spaces, Čech-complete spaces, and $p$-spaces.Fund. Math. 83 (1974), 107-119. MR 0343244
Reference: [3] Gruenhage G.: Generalized metric spaces.Handbook of Set-theoretic Topology (K. Kunen and J.E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 423-501. Zbl 0794.54034, MR 0776629
Reference: [4] Gruenhage G., Pelant J.: Analytic spaces and paracompactness of $X^2\setminus\Delta$.Topology and Appl. 28 (1988), 11-15. Zbl 0636.54025, MR 0927277
Reference: [5] Junnila H.J.K.: Metacompactness, paracompactness and interior-preserving open covers.Trans. Amer. Math. Soc. 249 (1979), 373-385. Zbl 0404.54017, MR 0525679
Reference: [6] Junnila H.J.K.: On submetacompactness.Topology Proc. 3 (1978), 375-405. MR 0540503
Reference: [7] Kombarov A.P.: On rectangular covers of $X^2\setminus\Delta$.Comment. Math. Univ. Carolinae 30 (1989), 81-83. MR 0995704
Reference: [8] Nagami K.: $\Sigma$-spaces.Fund. Math. 65 (1969), 169-192. Zbl 0181.50701, MR 0257963
Reference: [9] Yajima Y.: A characterization of submetacompactness in terms of products.Proc. Amer. Math. Soc. 112 (1991), 291-296. Zbl 0722.54017, MR 1054165
Reference: [10] Yajima Y.: Subspaces of squares; $X^2\setminus\Delta$ and others.Abstracts of Short Conference of Uniform Mathematics and its Applications, Bern, 1991.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-1_14.pdf 208.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo