Previous |  Up |  Next

Article

Title: On complemented copies of $c_0$ in spaces of operators, II (English)
Author: Emmanuele, Giovanni
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 2
Year: 1994
Pages: 259-261
.
Category: math
.
Summary: We show that as soon as $c_0$ embeds complementably into the space of all weakly compact operators from $X$ to $Y$, then it must live either in $X^\ast$ or in $Y$. (English)
Keyword: spaces of weakly compact operators
Keyword: complemented copies of $c_0$
MSC: 46A32
MSC: 46B20
MSC: 46B25
MSC: 46B28
MSC: 47D15
idZBL: Zbl 0862.46010
idMR: MR1286572
.
Date available: 2009-01-08T18:10:45Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118664
.
Reference: [BP] Bessaga C., Pelczynski A: On bases and unconditional convergence of series in Banach spaces.Studia Math. 17 (1958), 151-164. Zbl 0084.09805, MR 0115069
Reference: [D] Diestel J.: Sequences and Series in Banach Spaces.Graduate Text in Mathematics 97, Springer Verlag 1984. MR 0737004
Reference: [E1] Emmanuele G.: Dominated operators on $C[0,1]$ and the $(CRP)$.Collect. Math. 41 (1990), 21-25. Zbl 0752.47006, MR 1134442
Reference: [E2] Emmanuele G.: Remarks on the uncomplemented subspace $W(E,F)$.J. Funct. Analysis 99 (1991), 125-130. Zbl 0769.46006, MR 1120917
Reference: [E3] Emmanuele G.: On the containment of $c_0$ by spaces of compact operators.Bull. Sci. Math. 115 (1991), 177-184. MR 1101022
Reference: [E4] Emmanuele G.: A remark on the containment of $c_0$ in spaces of compact operators.Math. Proc. Cambridge Phil. Soc. 111 (1992), 331-335. MR 1142753
Reference: [E5] Emmanuele G.: On complemented copies of $c_0$ in spaces of operators.Comm. Math. 32 (1992), 29-32. MR 1202755
Reference: [E6] Emmanuele G.: About the position of $K_{w^\ast}(X^\ast,Y)$ in $L_{w^\ast}(X^\ast,Y)$.Atti Sem. Mat. Fisico Univ. Modena, to appear. MR 1282327
Reference: [EJ] Emmanuele G., John K.: Uncomplementability of spaces of compact operators in larger spaces of operators.to appear. Zbl 0903.46006, MR 1435603
Reference: [F] Feder M.: On subspaces of spaces with an unconditional basis and spaces of operators.Illinois J. Math. 34 (1980), 196-205. Zbl 0411.46009, MR 0575060
Reference: [H] Holub J.R.: Tensor product bases and tensor diagonals.Trans. Amer. Math. Soc. 151 (1970), 563-579. Zbl 0216.16203, MR 0279564
Reference: [K] Kalton N.J.: Spaces of compact operators.Math. Annalen 208 (1974), 267-278. Zbl 0266.47038, MR 0341154
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-2_6.pdf 169.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo