Title:
|
On $\omega$-limit sets of nonautonomous differential equations (English) |
Author:
|
Klebanov, Boris S. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
35 |
Issue:
|
2 |
Year:
|
1994 |
Pages:
|
267-281 |
. |
Category:
|
math |
. |
Summary:
|
In this paper the $\omega$-limit behaviour of trajectories of solutions of ordinary differential equations is studied by methods of an axiomatic theory of solution spaces. We prove, under very general assumptions, semi-invariance of $\omega$-limit sets and a Poincar'{e}-Bendixon type theorem. (English) |
Keyword:
|
$\omega$-limit sets |
Keyword:
|
stationary points |
Keyword:
|
the Poincar'{e}-Bendixon theorem |
MSC:
|
34A34 |
MSC:
|
34C05 |
MSC:
|
34C11 |
MSC:
|
34C99 |
MSC:
|
34D05 |
idZBL:
|
Zbl 0809.34042 |
idMR:
|
MR1286574 |
. |
Date available:
|
2009-01-08T18:10:55Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118666 |
. |
Reference:
|
[1] Artstein Z.: Limiting equations and stability of nonautonomous ordinary differential equations.Appendix A in: J.P. LaSalle, {The stability of dynamical systems}, CBMS Regional Conference Series in Applied Mathematics, vol. 25, SIAM, Philadelphia, 1976. Zbl 0364.93002, MR 0481301 |
Reference:
|
[2] Artstein Z.: Topological dynamics of ordinary differential equations and Kurzweil equations.J. Differential Equations 23 (1977), 224-243. Zbl 0353.34044, MR 0432985 |
Reference:
|
[3] Artstein Z.: The limiting equations of nonautonomous ordinary differential equations.J. Differential Equations 25 (1977), 184-202. Zbl 0358.34045, MR 0442381 |
Reference:
|
[4] Artstein Z.: Uniform asymptotic stability via the limiting equations.J. Differential Equations 27 (1978), 172-189. Zbl 0383.34037, MR 0466795 |
Reference:
|
[5] Coddington E.A., Levinson N.: Theory of ordinary differential equations.McGraw-Hill, New York, 1955. Zbl 0064.33002, MR 0069338 |
Reference:
|
[6] Davy J.L.: Properties of the solution set of a generalized differential equation.Bull. Austral. Math. Soc. 6 (1972), 379-398. Zbl 0239.49022, MR 0303023 |
Reference:
|
[7] Engelking R.: General Topology.PWN, Warsaw, 1977. Zbl 0684.54001, MR 0500780 |
Reference:
|
[8] Fedorchuk V.V., Filippov V.V.: General Topology. Basic Constructions (in Russian).Moscow University Press, Moscow, 1988. |
Reference:
|
[9] Filippov V.V.: On the theory of solution spaces of ordinary differential equations (in Russian).Dokl. Akad. Nauk SSSR 285 (1985), 1073-1077; English translation: Soviet Math. Dokl. 32 (1985), 850-854. MR 0820601 |
Reference:
|
[10] Filippov V.V.: On the ordinary differential equations with singularities in the right-hand side (in Russian).Mat. Zametki 38 (1985), 832-851; English translation: Math. Notes 38 (1985), 964-974. MR 0823421 |
Reference:
|
[11] Filippov V.V.: Cauchy problem theory for an ordinary differential equation from the point of view of general topology (in Russian).General Topology. Mappings of Topological Spaces, Moscow University Press, Moscow, 1986, 131-164. MR 1080764 |
Reference:
|
[12] Filippov V.V.: On stationary points and some geometric properties of solutions of ordinary differential equations (in Russian).Ross. Acad. Nauk Dokl. 323 (1992), 1043-1047; English translation: Russian Acad. Sci. Dokl. Math. 45 (1992), 497-501. MR 1202308 |
Reference:
|
[13] Filippov V.V.: On the Poincaré-Bendixon theorem and compact families of solution spaces of ordinary differential equations (in Russian).Mat. Zametki 53 (1993), 140-144. MR 1220821 |
Reference:
|
[14] Hartman P.: Ordinary differential equations.Wiley, New York, 1964. Zbl 1009.34001, MR 0171038 |
Reference:
|
[15] Kluczny C.: Sur certaines familles de courbes en relation avec la théorie des équations différentielles ordinaires I, II.Annales Universitatis M. Curie-Skłodowska, Sec. A, Math. 15 (1961) 13-40; 16 (1962) 5-18. |
Reference:
|
[16] Markus L.: Asymptotically autonomous differential systems.Contributions to the Theory of Nonlinear Oscillations, vol. III, Annals of Math. Stud. 36, Princeton University Press, N.J., 1956, 17-29. Zbl 0075.27002, MR 0081388 |
Reference:
|
[17] Miller R.K.: Asymptotic behavior of solutions of nonlinear differential equations.Trans. Amer. Math. Soc. 115 (1965), 400-416. Zbl 0137.28202, MR 0199502 |
Reference:
|
[18] Saks S.: Theory of the integral.PWN, Warsaw, 1937. Zbl 0017.30004 |
Reference:
|
[19] Savel'ev P.N.: On the Poincaré-Bendixon theorem and dissipativity in the plane (in Russian).Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1991, no. 3, 69-71; English translation: Moscow Univ. Math. Bull. 46 (1991), no. 3, 54-55. MR 1204259 |
Reference:
|
[20] Sell G.R.: Nonautonomous differential equations and topological dynamics I, II.Trans. Amer. Math. Soc. 127 (1967), 241-283. MR 0212313 |
Reference:
|
[21] Strauss A., Yorke J.A.: On asymptotically autonomous differential equations.Math. Systems Theory 1 (1967), 175-182. Zbl 0189.38502, MR 0213666 |
Reference:
|
[22] Thieme H.R.: Convergence results and a Poincaré-Bendixon trichotomy for asymptotically autonomous differential equations.J. Math. Biol. 30 (1992), 755-763. MR 1175102 |
Reference:
|
[23] Yorke J.A.: Spaces of solutions.Mathematical Systems Theory and Economics, Vol. II, Lecture Notes in Operations Research and Mathematical Economics, vol. 12, Springer-Verlag, New York, 1969, 383-403. Zbl 0188.15502, MR 0361294 |
Reference:
|
[24] Zaremba S.K.: Sur certaines familles de courbes en relation avec la théorie des équations différentielles.Ann. Soc. Polon. Math. 15 (1936), 83-100. |
. |