Previous |  Up |  Next

Article

Title: Opial's property and James' quasi-reflexive spaces (English)
Author: Kuczumow, Tadeusz
Author: Reich, Simeon
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 2
Year: 1994
Pages: 283-289
.
Category: math
.
Summary: Two of James' three quasi-reflexive spaces, as well as the James Tree, have the uniform $w^{\ast }$-Opial property. (English)
Keyword: fixed points
Keyword: James' quasi-reflexive spaces
Keyword: James Tree
Keyword: nonexpansive mappings
Keyword: Opial's property
Keyword: the demiclosedness principle
MSC: 46B10
MSC: 46B20
MSC: 46B25
MSC: 47H10
idZBL: Zbl 0818.46019
idMR: MR1286575
.
Date available: 2009-01-08T18:11:00Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118667
.
Reference: [1] Aksoy A.G., Khamsi M.A.: Nonstandard Methods in Fixed Point Theory.Springer-Verlag, New York, 1990. Zbl 0713.47050, MR 1066202
Reference: [2] Andrew A.: Spreading basic sequences and subspaces of James' quasi-reflexive space.Math. Scan. 48 (1981), 109-118. Zbl 0439.46010, MR 0621422
Reference: [3] Brodskii M.S., Milman D.P.: On the center of a convex set.Dokl. Akad. Nauk SSSR 59 (1948), 837-840. MR 0024073
Reference: [4] Goebel K., Kirk W.A.: Topics in Metric Fixed Point Theory.Cambridge University Press, Cambridge, 1990. MR 1074005
Reference: [5] Goebel K., Reich S.: Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings.Marcel Dekker, New York and Basel, 1984. Zbl 0537.46001, MR 0744194
Reference: [6] Goebel K., Sekowski T., Stachura A.: Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball.Nonlinear Analysis 4 (1980), 1011-1021. Zbl 0448.47048, MR 0586863
Reference: [7] Gǫrnicki J.: Some remarks on almost convergence of the Picard iterates for nonexpansive mappings in Banach spaces which satisfy the Opial condition.Comment. Math. 29 (1988), 59-68. MR 0988960
Reference: [8] Gossez J.P., Lami Dozo E.: Some geometric properties related to the fixed point theory for nonexpansive mappings.Pacific J. Math. 40 (1972), 565-573. MR 0310717
Reference: [9] James R.C.: Bases and reflexivity of Banach spaces.Ann. of Math. 52 (1950), 518-527. Zbl 0039.12202, MR 0039915
Reference: [10] James R.C.: A non-reflexive Banach space isometric with its second conjugate space.Proc. Nat. Acad. Sci. USA 37 (1951), 134-137. MR 0044024
Reference: [11] James R.C.: A separable somewhat reflexive Banach space with nonseparable dual.Bull. Amer. Math. Soc. 80 (1974), 738-743. Zbl 0286.46018, MR 0417763
Reference: [12] James R.C.: Banach spaces quasi-reflexive of order one.Studia Math. 60 (1977), 157-177. Zbl 0356.46017, MR 0461099
Reference: [13] Karlovitz L.A.: On nonexpansive mappings.Proc. Amer. Math. Soc. 55 (1976), 321-325. Zbl 0328.47033, MR 0405182
Reference: [14] Khamsi M.A.: James' quasi-reflexive space has the fixed point property.Bull. Austral. Math. Soc. 39 (1989), 25-30. Zbl 0672.47045, MR 0976257
Reference: [15] Khamsi M.A.: Normal structure for Banach spaces with Schauder decomposition.Canad. Math. Bull. 32 (1989), 344-351. Zbl 0647.46016, MR 1010075
Reference: [16] Khamsi M.A.: On uniform Opial condition and uniform Kadec-Klee property in Banach and metric spaces.preprint. Zbl 0854.47035, MR 1380728
Reference: [17] Kirk W.A.: A fixed point theorem for mappings which do not increase distances.Amer. Math. Monthly 72 (1965), 1004-1006. Zbl 0141.32402, MR 0189009
Reference: [18] Kuczumow T.: Weak convergence theorems for nonexpansive mappings and semigroups in Banach spaces with Opial's property.Proc. Amer. Math. Soc. 93 (1985), 430-432. Zbl 0585.47043, MR 0773996
Reference: [19] Lindenstrauss J., Stegall C.: Examples of separable spaces which do not contain $l_1$ and whose duals are non-separable.Studia Math. 54 (1975), 81-105. MR 0390720
Reference: [20] Lindenstrauss J., Tzafriri L.: Classical Banach Spaces, Vol. I and II.Springer-Verlag, BerlinHeidelberg-New York, 1977 and 1979. MR 0415253
Reference: [21] Opial Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings.Bull. Amer. Math. Soc. 73 (1967), 591-597. Zbl 0179.19902, MR 0211301
Reference: [22] Opial Z.: Nonexpansive and Monotone Mappings in Banach Spaces.Lecture Notes 61-1, Center for Dynamical Systems, Brown University, Providence, R.I., 1967.
Reference: [23] Prus S.: Banach spaces with the uniform Opial property.Nonlinear Analysis 18 (1992), 697-704. Zbl 0786.46023, MR 1160113
Reference: [24] Tingley D.: The normal structure of James' quasi-reflexive space.Bull. Austral. Math. Soc. 42 (1990), 95-100. Zbl 0724.46014, MR 1066363
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-2_9.pdf 194.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo