Previous |  Up |  Next

Article

Keywords:
strongly graded rings; radicals; local nilpotency
Summary:
For any non-torsion group $G$ with identity $e$, we construct a strongly $G$-graded ring $R$ such that the Jacobson radical $J(R_e)$ is locally nilpotent, but $J(R)$ is not locally nilpotent. This answers a question posed by Puczy{\l}owski.
References:
[1] Amitsur S.A.: Rings of quotients and Morita contexts. J. Algebra 17 (1971), 273-298. MR 0414604 | Zbl 0221.16014
[2] Clase M.V., Jespers E.: On the Jacobson radical of semigroup graded rings. to appear. MR 1296583 | Zbl 0811.16034
[3] Cohen M., Montgomery S.: Group-graded rings, smash products, and group actions. Trans. Amer. Math. Soc. 282 (1984), 237-258. MR 0728711 | Zbl 0533.16001
[4] Cohen M., Rowen L.H.: Group graded rings. Commun. Algebra 11 (1983), 1252-1270. MR 0696990 | Zbl 0522.16001
[5] Gardner B.J.: Some aspects of $T$-nilpotence. Pacific J. Math 53 (1974), 117-130. MR 0360667 | Zbl 0253.16009
[6] Jespers E.: On radicals of graded rings and applications to semigroup rings. Commun. Algebra 13 (1985), 2457-2472. MR 0807485 | Zbl 0575.16001
[7] Jespers E., Krempa J., Puczyłowski E.R.: On radicals of graded rings. Commun. Algebra 10 (1982), 1849-1854. MR 0674695
[8] Jespers E., Puczyłowski E.R.: The Jacobson and Brown-McCoy radicals of rings graded by free groups. Commun. Algebra 19 (1991), 551-558. MR 1100363
[9] Karpilovsky G.: The Jacobson Radical of Classical Rings. Pitman Monographs, New York, 1991. MR 1124405 | Zbl 0729.16001
[10] Kelarev A.V.: Hereditary radicals and bands of associative rings. J. Austral. Math. Soc. (Ser. A) 51 (1991), 62-72. MR 1119688 | Zbl 0756.16010
[11] Kelarev A.V.: Radicals of graded rings and applications to semigroup rings. Commun. Algebra 20 (1992), 681-700. MR 1153042 | Zbl 0748.16018
[12] Năstăsescu C.: Strongly graded rings of finite groups. Commun. Algebra 11 (1983), 1033-1071. MR 0700723
[13] Okniński J.: On the radical of semigroup algebras satisfying polynomial identities. Math. Proc. Cambridge Philos. Soc. 99 (1986), 45-50. MR 0809496
[14] Okniński J.: Semigroup Algebras. Marcel Dekker, New York, 1991. MR 1083356
[15] Passman D.S.: Infinite crossed products and group graded rings. Trans. Amer. Math. Soc. 284 (1984), 707-727. MR 0743740 | Zbl 0519.16010
[16] Passman D.S.: The Algebraic Structure of Group Rings. Wiley Interscience, New York, 1977. MR 0470211 | Zbl 0654.16001
[17] Puczyłowski E.R.: A note on graded algebras. Proc. Amer. Math. Soc. 113 (1991), 1-3. MR 0991706
[18] Puczyłowski E.R.: Some questions concerning radicals of associative rings. Proc. Szekszásrd 1991 Conf. Theory of Radicals Coll. Math. Soc. János Bolyai 61 (1993), 209-227. MR 1243913
[19] Ram J.: On the semisimplicity of skew polynomial rings. Proc. Amer. Math. Soc. 90 (1984), 347-351. MR 0728345 | Zbl 0535.16002
[20] Saorín M.: Descending chain conditions for graded rings. Proc. Amer. Math. Soc. 115 (1992), 295-301. MR 1093603
[21] Wauters P., Jespers E.: Rings graded by an inverse semigroup with finitely many idempotents. Houston J. Math. 15 (1989), 291-304. MR 1022070 | Zbl 0685.16003
Partner of
EuDML logo