[3] Cohen M., Montgomery S.:
Group-graded rings, smash products, and group actions. Trans. Amer. Math. Soc. 282 (1984), 237-258.
MR 0728711 |
Zbl 0533.16001
[6] Jespers E.:
On radicals of graded rings and applications to semigroup rings. Commun. Algebra 13 (1985), 2457-2472.
MR 0807485 |
Zbl 0575.16001
[7] Jespers E., Krempa J., Puczyłowski E.R.:
On radicals of graded rings. Commun. Algebra 10 (1982), 1849-1854.
MR 0674695
[8] Jespers E., Puczyłowski E.R.:
The Jacobson and Brown-McCoy radicals of rings graded by free groups. Commun. Algebra 19 (1991), 551-558.
MR 1100363
[9] Karpilovsky G.:
The Jacobson Radical of Classical Rings. Pitman Monographs, New York, 1991.
MR 1124405 |
Zbl 0729.16001
[10] Kelarev A.V.:
Hereditary radicals and bands of associative rings. J. Austral. Math. Soc. (Ser. A) 51 (1991), 62-72.
MR 1119688 |
Zbl 0756.16010
[11] Kelarev A.V.:
Radicals of graded rings and applications to semigroup rings. Commun. Algebra 20 (1992), 681-700.
MR 1153042 |
Zbl 0748.16018
[12] Năstăsescu C.:
Strongly graded rings of finite groups. Commun. Algebra 11 (1983), 1033-1071.
MR 0700723
[13] Okniński J.:
On the radical of semigroup algebras satisfying polynomial identities. Math. Proc. Cambridge Philos. Soc. 99 (1986), 45-50.
MR 0809496
[14] Okniński J.:
Semigroup Algebras. Marcel Dekker, New York, 1991.
MR 1083356
[15] Passman D.S.:
Infinite crossed products and group graded rings. Trans. Amer. Math. Soc. 284 (1984), 707-727.
MR 0743740 |
Zbl 0519.16010
[16] Passman D.S.:
The Algebraic Structure of Group Rings. Wiley Interscience, New York, 1977.
MR 0470211 |
Zbl 0654.16001
[17] Puczyłowski E.R.:
A note on graded algebras. Proc. Amer. Math. Soc. 113 (1991), 1-3.
MR 0991706
[18] Puczyłowski E.R.:
Some questions concerning radicals of associative rings. Proc. Szekszásrd 1991 Conf. Theory of Radicals Coll. Math. Soc. János Bolyai 61 (1993), 209-227.
MR 1243913
[19] Ram J.:
On the semisimplicity of skew polynomial rings. Proc. Amer. Math. Soc. 90 (1984), 347-351.
MR 0728345 |
Zbl 0535.16002
[20] Saorín M.:
Descending chain conditions for graded rings. Proc. Amer. Math. Soc. 115 (1992), 295-301.
MR 1093603
[21] Wauters P., Jespers E.:
Rings graded by an inverse semigroup with finitely many idempotents. Houston J. Math. 15 (1989), 291-304.
MR 1022070 |
Zbl 0685.16003