Previous |  Up |  Next

Article

Keywords:
selective; semiselective and rapid ultrafilter; Rudin-Keisler order; weakly $M$-sequential; strongly $M$-sequential; $\operatorname{WFU}(M)$-space; $\operatorname{SFU}(M)$-space; strictly $\operatorname{WFU}(M)$-space; strictly $\operatorname{SFU}(M)$-space; countable strong fan tightness; Id-fan tightness; property $C''$; measure zero
Summary:
We introduce the properties of a space to be strictly $\operatorname{WFU}(M)$ or strictly $\operatorname{SFU}(M)$, where $\emptyset \neq M\subset \omega ^{\ast }$, and we analyze them and other generalizations of $p$-sequentiality ($p\in \omega ^{\ast }$) in Function Spaces, such as Kombarov's weakly and strongly $M$-sequentiality, and Kocinac's $\operatorname{WFU}(M)$ and $\operatorname{SFU}(M)$-properties. We characterize these in $C_\pi (X)$ in terms of cover-properties in $X$; and we prove that weak $M$-sequentiality is equivalent to $\operatorname{WFU}(L(M))$-property, where $L(M)=\{{}^{\lambda }p:\lambda <\omega _1$ and $p\in M\}$, in the class of spaces which are $p$-compact for every $p\in M\subset \omega ^{\ast }$; and that $C_\pi (X)$ is a $\operatorname{WFU}(L(M))$-space iff $X$ satisfies the $M$-version $\delta _M$ of Gerlitz and Nagy's property $\delta $. We also prove that if $C_\pi (X)$ is a strictly $\operatorname{WFU}(M)$-space (resp., $\operatorname{WFU}(M)$-space and every $\operatorname{RK}$-predecessor of $p\in M$ is rapid), then $X$ satisfies $C''$ (resp., $X$ is zero-dimensional), and, if in addition, $X\subset \Bbb R$, then $X$ has strong measure zero (resp., $X$ has measure zero), and we conclude that $C_\pi (\Bbb R)$ is not $p$-sequential if $p\in \omega ^{\ast }$ is selective. Furthermore, we show: (a) if $p\in \omega ^{\ast }$ is selective, then $C_\pi (X)$ is an $\operatorname{FU}(p)$-space iff $C_\pi (X)$ is a strictly $\operatorname{WFU}(T(p))$-space, where $T(p)$ is the set of $\operatorname{RK}$-equivalent ultrafilters of $p$; and (b) $p\in \omega ^{\ast }$ is semiselective iff the subspace $\omega \cup \{p\}$ of $\beta \omega $ is a strictly $\operatorname{WFU}(T(P))$-space. Finally, we study these properties in $C_\pi (Z)$ when $Z$ is a topological product of spaces.
References:
[AR1] Arhangel'skii A.V.: The spectrum of frequences of topological spaces and their classification (in Russian). Dokl. Akad. Nauk SSSR 206 (1972), 265-268. MR 0394575
[AR2] Arhangel'skii A.V.: The spectrum of frequences of a topological space and the product operation (in Russian). Trudy Moskov. Mat. Obsc. 40 (1979), 171-266. MR 0550259
[AR3] Arhangel'skii A.V.: Structure and classification of topological spaces and cardinal invariants. Russian Math. Surveys 33 (1978), 33-96. MR 0526012
[AF] Arhangel'skii A.V., Franklin S.P.: Ordinal invariants for topological spaces. Michigan Math. J. 15 (1968), 313-320. MR 0240767
[B] Bernstein A.R.: A new kind of compactness for topological spaces. Fund. Math. 66 (1970), 185-193. MR 0251697 | Zbl 0198.55401
[Bo] Booth D.: Ultrafilters on a countable set. Ann. Math. Logic 2 (1970), 1-24. MR 0277371 | Zbl 0231.02067
[C1] Comfort W.W.: Ultrafilters: some old and some new results. Bull. Amer. Math. Soc. 83 (1977), 417-455. MR 0454893
[C2] Comfort W.W.: Topological groups. in K. Kunen and J.E. Vaughan, editors, Handbook of Set-Theoretic Topology, North-Holland, 1984. MR 0776643 | Zbl 1071.54019
[CN] Comfort W.W., Negrepontis S.: The Theory of Ultrafilters. Springer Verlag, Berlin-Heidelberg-New York, 1974. MR 0396267 | Zbl 0298.02004
[D] Daniels P.: Pixley-Roy spaces over subsets of reals. Top. Appl. 29 (1988), 93-106. MR 0944073
[E] Engelking R.: General Topology. Sigma Series in Pure Math., vol. 6, Heldermann Verlag, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[F] Frolík Z.: Sums of ultrafilters. Bull. Amer. Math. Soc. 73 (1967), 87-91. MR 0203676
[G-F1] García-Ferreira S.: Comfort types of ultrafilters. Proc. Amer. Math. Soc. 120 (1994), 1251-1260. MR 1170543
[G-F2] García-Ferreira S.: On ${FU}(p)$-spaces and $p$-sequential spaces. Comment. Math. Univ. Carolinae 32 (1991), 161-171. MR 1118299 | Zbl 0789.54032
[G-T1] García-Ferreira S., Tamariz-Mascarúa A.: $p$-Fréchet-Urysohn property of function spaces. to be published in Top. and Appl.
[G-T2] García-Ferreira S., Tamariz-Mascarúa A.: On $p$-sequential $p$-compact spaces. Comment. Math. Univ. Carolinae 34 (1993), 347-356. MR 1241743
[G-T3] García-Ferreira S., Tamariz-Mascarúa A.: Some generalizations of rapid ultrafilters in topology and Id-fan tightness. to be published in Tsukuba Journal of Math.
[G] Gerlitz J.: Some properties of $C(X)$, II. Topology Appl. 15 (1983), 255-262. MR 0694545
[GN1] Gerlitz J., Nagy Zs.: Products of convergence properties. Comment. Math. Univ. Carolinae 23 (1982), 747-766. MR 0687569
[GN2] Gerlitz J., Nagy Zs.: Some properties of $C(X)$, I. Topology Appl. 14 (1982), 151-161. MR 0667661
[K] Katětov M.: Products of filters. Comment. Math. Univ. Carolinae 9 (1968), 173-189. MR 0250257
[Ko] Kocinac L.D.: A generalization of chain-net spaces. Publ. Inst. Math. (Beograd) 44 (58), 1988, pp. 109-114. MR 0995414 | Zbl 0674.54003
[Km] Kombarov A.P.: On a theorem of A.H. Stone. Soviet Math. Dokl. 27 (1983), 544-547. Zbl 0531.54007
[Ku] Kunen K.: Some points in $\beta N$. Proc. Cambridge Philos. Soc. 80 (1976), 358-398. MR 0427070 | Zbl 0345.02047
[L] Laflamme C.: Forcing with filters and complete combinatorics. Ann. Math. Logic 42 (1989), 125-163. MR 0996504 | Zbl 0681.03035
[Ma] Malykhin V.I.: The sequentiality and Fréchet-Urysohn property with respect to ultrafilters. Acta Univ. Carolinae Math. et Phy. 31 (1990), 65-69. MR 1101417
[MS] Malykhin V.I., Shakmatov D.D.: Cartesian products of Fréchet topological groups and function spaces. Acta Math. Hung. 60 (1992), 207-215. MR 1177675
[MN] McCoy R.A., Ntanty I.: Topological Properties of Spaces of Continuous functions. Lecture Notes in Math. 1315, Springer Verlag, 1980.
[M] Miller A.W.: There are no $Q$-points in Laver's model for the Borel conjecture. Proc. Amer. Math. Soc. 78 (1980), 103-106. MR 0548093 | Zbl 0439.03035
[N] Nyikos P.J.: Metrizability and the Fréchet-Urysohn property in topological groups. Proc. Amer. Math. Soc. 83 (1981), 793-801. MR 0630057 | Zbl 0474.22001
[Py] Pytkeev E.G.: On sequentiality of spaces of continuous functions. Russian Math. Surveys 37 (1982), 190-191. MR 0676634
[S] Sakai M.: Property $C''$ and function spaces. Proc. Amer. Math. Soc. 104 (1988), 917-919. MR 0964873 | Zbl 0691.54007
[V] Vopěnka P.: The construction of models of set theory by the method of ultraproducts. Z. Math. Logik Grundlagen Math. 8 (1962), 293-304. MR 0146085
Partner of
EuDML logo