Title:
|
$p$-sequential like properties in function spaces (English) |
Author:
|
García-Ferreira, Salvador |
Author:
|
Tamariz-Mascarúa, Angel |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
35 |
Issue:
|
4 |
Year:
|
1994 |
Pages:
|
753-771 |
. |
Category:
|
math |
. |
Summary:
|
We introduce the properties of a space to be strictly $\operatorname{WFU}(M)$ or strictly $\operatorname{SFU}(M)$, where $\emptyset \neq M\subset \omega ^{\ast }$, and we analyze them and other generalizations of $p$-sequentiality ($p\in \omega ^{\ast }$) in Function Spaces, such as Kombarov's weakly and strongly $M$-sequentiality, and Kocinac's $\operatorname{WFU}(M)$ and $\operatorname{SFU}(M)$-properties. We characterize these in $C_\pi (X)$ in terms of cover-properties in $X$; and we prove that weak $M$-sequentiality is equivalent to $\operatorname{WFU}(L(M))$-property, where $L(M)=\{{}^{\lambda }p:\lambda <\omega _1$ and $p\in M\}$, in the class of spaces which are $p$-compact for every $p\in M\subset \omega ^{\ast }$; and that $C_\pi (X)$ is a $\operatorname{WFU}(L(M))$-space iff $X$ satisfies the $M$-version $\delta _M$ of Gerlitz and Nagy's property $\delta $. We also prove that if $C_\pi (X)$ is a strictly $\operatorname{WFU}(M)$-space (resp., $\operatorname{WFU}(M)$-space and every $\operatorname{RK}$-predecessor of $p\in M$ is rapid), then $X$ satisfies $C''$ (resp., $X$ is zero-dimensional), and, if in addition, $X\subset \Bbb R$, then $X$ has strong measure zero (resp., $X$ has measure zero), and we conclude that $C_\pi (\Bbb R)$ is not $p$-sequential if $p\in \omega ^{\ast }$ is selective. Furthermore, we show: (a) if $p\in \omega ^{\ast }$ is selective, then $C_\pi (X)$ is an $\operatorname{FU}(p)$-space iff $C_\pi (X)$ is a strictly $\operatorname{WFU}(T(p))$-space, where $T(p)$ is the set of $\operatorname{RK}$-equivalent ultrafilters of $p$; and (b) $p\in \omega ^{\ast }$ is semiselective iff the subspace $\omega \cup \{p\}$ of $\beta \omega $ is a strictly $\operatorname{WFU}(T(P))$-space. Finally, we study these properties in $C_\pi (Z)$ when $Z$ is a topological product of spaces. (English) |
Keyword:
|
selective |
Keyword:
|
semiselective and rapid ultrafilter; Rudin-Keisler order; weakly $M$-sequential |
Keyword:
|
strongly $M$-sequential |
Keyword:
|
$\operatorname{WFU}(M)$-space |
Keyword:
|
$\operatorname{SFU}(M)$-space |
Keyword:
|
strictly $\operatorname{WFU}(M)$-space |
Keyword:
|
strictly $\operatorname{SFU}(M)$-space; countable strong fan tightness |
Keyword:
|
Id-fan tightness |
Keyword:
|
property $C''$ |
Keyword:
|
measure zero |
MSC:
|
03E05 |
MSC:
|
04A20 |
MSC:
|
54C40 |
MSC:
|
54D55 |
idZBL:
|
Zbl 0814.54012 |
idMR:
|
MR1321246 |
. |
Date available:
|
2009-01-08T18:14:58Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118717 |
. |
Reference:
|
[AR1] Arhangel'skii A.V.: The spectrum of frequences of topological spaces and their classification (in Russian).Dokl. Akad. Nauk SSSR 206 (1972), 265-268. MR 0394575 |
Reference:
|
[AR2] Arhangel'skii A.V.: The spectrum of frequences of a topological space and the product operation (in Russian).Trudy Moskov. Mat. Obsc. 40 (1979), 171-266. MR 0550259 |
Reference:
|
[AR3] Arhangel'skii A.V.: Structure and classification of topological spaces and cardinal invariants.Russian Math. Surveys 33 (1978), 33-96. MR 0526012 |
Reference:
|
[AF] Arhangel'skii A.V., Franklin S.P.: Ordinal invariants for topological spaces.Michigan Math. J. 15 (1968), 313-320. MR 0240767 |
Reference:
|
[B] Bernstein A.R.: A new kind of compactness for topological spaces.Fund. Math. 66 (1970), 185-193. Zbl 0198.55401, MR 0251697 |
Reference:
|
[Bo] Booth D.: Ultrafilters on a countable set.Ann. Math. Logic 2 (1970), 1-24. Zbl 0231.02067, MR 0277371 |
Reference:
|
[C1] Comfort W.W.: Ultrafilters: some old and some new results.Bull. Amer. Math. Soc. 83 (1977), 417-455. MR 0454893 |
Reference:
|
[C2] Comfort W.W.: Topological groups.in K. Kunen and J.E. Vaughan, editors, Handbook of Set-Theoretic Topology, North-Holland, 1984. Zbl 1071.54019, MR 0776643 |
Reference:
|
[CN] Comfort W.W., Negrepontis S.: The Theory of Ultrafilters.Springer Verlag, Berlin-Heidelberg-New York, 1974. Zbl 0298.02004, MR 0396267 |
Reference:
|
[D] Daniels P.: Pixley-Roy spaces over subsets of reals.Top. Appl. 29 (1988), 93-106. MR 0944073 |
Reference:
|
[E] Engelking R.: General Topology.Sigma Series in Pure Math., vol. 6, Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[F] Frolík Z.: Sums of ultrafilters.Bull. Amer. Math. Soc. 73 (1967), 87-91. MR 0203676 |
Reference:
|
[G-F1] García-Ferreira S.: Comfort types of ultrafilters.Proc. Amer. Math. Soc. 120 (1994), 1251-1260. MR 1170543 |
Reference:
|
[G-F2] García-Ferreira S.: On ${FU}(p)$-spaces and $p$-sequential spaces.Comment. Math. Univ. Carolinae 32 (1991), 161-171. Zbl 0789.54032, MR 1118299 |
Reference:
|
[G-T1] García-Ferreira S., Tamariz-Mascarúa A.: $p$-Fréchet-Urysohn property of function spaces.to be published in Top. and Appl. |
Reference:
|
[G-T2] García-Ferreira S., Tamariz-Mascarúa A.: On $p$-sequential $p$-compact spaces.Comment. Math. Univ. Carolinae 34 (1993), 347-356. MR 1241743 |
Reference:
|
[G-T3] García-Ferreira S., Tamariz-Mascarúa A.: Some generalizations of rapid ultrafilters in topology and Id-fan tightness.to be published in Tsukuba Journal of Math. |
Reference:
|
[G] Gerlitz J.: Some properties of $C(X)$, II.Topology Appl. 15 (1983), 255-262. MR 0694545 |
Reference:
|
[GN1] Gerlitz J., Nagy Zs.: Products of convergence properties.Comment. Math. Univ. Carolinae 23 (1982), 747-766. MR 0687569 |
Reference:
|
[GN2] Gerlitz J., Nagy Zs.: Some properties of $C(X)$, I.Topology Appl. 14 (1982), 151-161. MR 0667661 |
Reference:
|
[K] Katětov M.: Products of filters.Comment. Math. Univ. Carolinae 9 (1968), 173-189. MR 0250257 |
Reference:
|
[Ko] Kocinac L.D.: A generalization of chain-net spaces.Publ. Inst. Math. (Beograd) 44 (58), 1988, pp. 109-114. Zbl 0674.54003, MR 0995414 |
Reference:
|
[Km] Kombarov A.P.: On a theorem of A.H. Stone.Soviet Math. Dokl. 27 (1983), 544-547. Zbl 0531.54007 |
Reference:
|
[Ku] Kunen K.: Some points in $\beta N$.Proc. Cambridge Philos. Soc. 80 (1976), 358-398. Zbl 0345.02047, MR 0427070 |
Reference:
|
[L] Laflamme C.: Forcing with filters and complete combinatorics.Ann. Math. Logic 42 (1989), 125-163. Zbl 0681.03035, MR 0996504 |
Reference:
|
[Ma] Malykhin V.I.: The sequentiality and Fréchet-Urysohn property with respect to ultrafilters.Acta Univ. Carolinae Math. et Phy. 31 (1990), 65-69. MR 1101417 |
Reference:
|
[MS] Malykhin V.I., Shakmatov D.D.: Cartesian products of Fréchet topological groups and function spaces.Acta Math. Hung. 60 (1992), 207-215. MR 1177675 |
Reference:
|
[MN] McCoy R.A., Ntanty I.: Topological Properties of Spaces of Continuous functions.Lecture Notes in Math. 1315, Springer Verlag, 1980. |
Reference:
|
[M] Miller A.W.: There are no $Q$-points in Laver's model for the Borel conjecture.Proc. Amer. Math. Soc. 78 (1980), 103-106. Zbl 0439.03035, MR 0548093 |
Reference:
|
[N] Nyikos P.J.: Metrizability and the Fréchet-Urysohn property in topological groups.Proc. Amer. Math. Soc. 83 (1981), 793-801. Zbl 0474.22001, MR 0630057 |
Reference:
|
[Py] Pytkeev E.G.: On sequentiality of spaces of continuous functions.Russian Math. Surveys 37 (1982), 190-191. MR 0676634 |
Reference:
|
[S] Sakai M.: Property $C''$ and function spaces.Proc. Amer. Math. Soc. 104 (1988), 917-919. Zbl 0691.54007, MR 0964873 |
Reference:
|
[V] Vopěnka P.: The construction of models of set theory by the method of ultraproducts.Z. Math. Logik Grundlagen Math. 8 (1962), 293-304. MR 0146085 |
. |