Previous |  Up |  Next

Article

Title: $p$-sequential like properties in function spaces (English)
Author: García-Ferreira, Salvador
Author: Tamariz-Mascarúa, Angel
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 4
Year: 1994
Pages: 753-771
.
Category: math
.
Summary: We introduce the properties of a space to be strictly $\operatorname{WFU}(M)$ or strictly $\operatorname{SFU}(M)$, where $\emptyset \neq M\subset \omega ^{\ast }$, and we analyze them and other generalizations of $p$-sequentiality ($p\in \omega ^{\ast }$) in Function Spaces, such as Kombarov's weakly and strongly $M$-sequentiality, and Kocinac's $\operatorname{WFU}(M)$ and $\operatorname{SFU}(M)$-properties. We characterize these in $C_\pi (X)$ in terms of cover-properties in $X$; and we prove that weak $M$-sequentiality is equivalent to $\operatorname{WFU}(L(M))$-property, where $L(M)=\{{}^{\lambda }p:\lambda <\omega _1$ and $p\in M\}$, in the class of spaces which are $p$-compact for every $p\in M\subset \omega ^{\ast }$; and that $C_\pi (X)$ is a $\operatorname{WFU}(L(M))$-space iff $X$ satisfies the $M$-version $\delta _M$ of Gerlitz and Nagy's property $\delta $. We also prove that if $C_\pi (X)$ is a strictly $\operatorname{WFU}(M)$-space (resp., $\operatorname{WFU}(M)$-space and every $\operatorname{RK}$-predecessor of $p\in M$ is rapid), then $X$ satisfies $C''$ (resp., $X$ is zero-dimensional), and, if in addition, $X\subset \Bbb R$, then $X$ has strong measure zero (resp., $X$ has measure zero), and we conclude that $C_\pi (\Bbb R)$ is not $p$-sequential if $p\in \omega ^{\ast }$ is selective. Furthermore, we show: (a) if $p\in \omega ^{\ast }$ is selective, then $C_\pi (X)$ is an $\operatorname{FU}(p)$-space iff $C_\pi (X)$ is a strictly $\operatorname{WFU}(T(p))$-space, where $T(p)$ is the set of $\operatorname{RK}$-equivalent ultrafilters of $p$; and (b) $p\in \omega ^{\ast }$ is semiselective iff the subspace $\omega \cup \{p\}$ of $\beta \omega $ is a strictly $\operatorname{WFU}(T(P))$-space. Finally, we study these properties in $C_\pi (Z)$ when $Z$ is a topological product of spaces. (English)
Keyword: selective
Keyword: semiselective and rapid ultrafilter; Rudin-Keisler order; weakly $M$-sequential
Keyword: strongly $M$-sequential
Keyword: $\operatorname{WFU}(M)$-space
Keyword: $\operatorname{SFU}(M)$-space
Keyword: strictly $\operatorname{WFU}(M)$-space
Keyword: strictly $\operatorname{SFU}(M)$-space; countable strong fan tightness
Keyword: Id-fan tightness
Keyword: property $C''$
Keyword: measure zero
MSC: 03E05
MSC: 04A20
MSC: 54C40
MSC: 54D55
idZBL: Zbl 0814.54012
idMR: MR1321246
.
Date available: 2009-01-08T18:14:58Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118717
.
Reference: [AR1] Arhangel'skii A.V.: The spectrum of frequences of topological spaces and their classification (in Russian).Dokl. Akad. Nauk SSSR 206 (1972), 265-268. MR 0394575
Reference: [AR2] Arhangel'skii A.V.: The spectrum of frequences of a topological space and the product operation (in Russian).Trudy Moskov. Mat. Obsc. 40 (1979), 171-266. MR 0550259
Reference: [AR3] Arhangel'skii A.V.: Structure and classification of topological spaces and cardinal invariants.Russian Math. Surveys 33 (1978), 33-96. MR 0526012
Reference: [AF] Arhangel'skii A.V., Franklin S.P.: Ordinal invariants for topological spaces.Michigan Math. J. 15 (1968), 313-320. MR 0240767
Reference: [B] Bernstein A.R.: A new kind of compactness for topological spaces.Fund. Math. 66 (1970), 185-193. Zbl 0198.55401, MR 0251697
Reference: [Bo] Booth D.: Ultrafilters on a countable set.Ann. Math. Logic 2 (1970), 1-24. Zbl 0231.02067, MR 0277371
Reference: [C1] Comfort W.W.: Ultrafilters: some old and some new results.Bull. Amer. Math. Soc. 83 (1977), 417-455. MR 0454893
Reference: [C2] Comfort W.W.: Topological groups.in K. Kunen and J.E. Vaughan, editors, Handbook of Set-Theoretic Topology, North-Holland, 1984. Zbl 1071.54019, MR 0776643
Reference: [CN] Comfort W.W., Negrepontis S.: The Theory of Ultrafilters.Springer Verlag, Berlin-Heidelberg-New York, 1974. Zbl 0298.02004, MR 0396267
Reference: [D] Daniels P.: Pixley-Roy spaces over subsets of reals.Top. Appl. 29 (1988), 93-106. MR 0944073
Reference: [E] Engelking R.: General Topology.Sigma Series in Pure Math., vol. 6, Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [F] Frolík Z.: Sums of ultrafilters.Bull. Amer. Math. Soc. 73 (1967), 87-91. MR 0203676
Reference: [G-F1] García-Ferreira S.: Comfort types of ultrafilters.Proc. Amer. Math. Soc. 120 (1994), 1251-1260. MR 1170543
Reference: [G-F2] García-Ferreira S.: On ${FU}(p)$-spaces and $p$-sequential spaces.Comment. Math. Univ. Carolinae 32 (1991), 161-171. Zbl 0789.54032, MR 1118299
Reference: [G-T1] García-Ferreira S., Tamariz-Mascarúa A.: $p$-Fréchet-Urysohn property of function spaces.to be published in Top. and Appl.
Reference: [G-T2] García-Ferreira S., Tamariz-Mascarúa A.: On $p$-sequential $p$-compact spaces.Comment. Math. Univ. Carolinae 34 (1993), 347-356. MR 1241743
Reference: [G-T3] García-Ferreira S., Tamariz-Mascarúa A.: Some generalizations of rapid ultrafilters in topology and Id-fan tightness.to be published in Tsukuba Journal of Math.
Reference: [G] Gerlitz J.: Some properties of $C(X)$, II.Topology Appl. 15 (1983), 255-262. MR 0694545
Reference: [GN1] Gerlitz J., Nagy Zs.: Products of convergence properties.Comment. Math. Univ. Carolinae 23 (1982), 747-766. MR 0687569
Reference: [GN2] Gerlitz J., Nagy Zs.: Some properties of $C(X)$, I.Topology Appl. 14 (1982), 151-161. MR 0667661
Reference: [K] Katětov M.: Products of filters.Comment. Math. Univ. Carolinae 9 (1968), 173-189. MR 0250257
Reference: [Ko] Kocinac L.D.: A generalization of chain-net spaces.Publ. Inst. Math. (Beograd) 44 (58), 1988, pp. 109-114. Zbl 0674.54003, MR 0995414
Reference: [Km] Kombarov A.P.: On a theorem of A.H. Stone.Soviet Math. Dokl. 27 (1983), 544-547. Zbl 0531.54007
Reference: [Ku] Kunen K.: Some points in $\beta N$.Proc. Cambridge Philos. Soc. 80 (1976), 358-398. Zbl 0345.02047, MR 0427070
Reference: [L] Laflamme C.: Forcing with filters and complete combinatorics.Ann. Math. Logic 42 (1989), 125-163. Zbl 0681.03035, MR 0996504
Reference: [Ma] Malykhin V.I.: The sequentiality and Fréchet-Urysohn property with respect to ultrafilters.Acta Univ. Carolinae Math. et Phy. 31 (1990), 65-69. MR 1101417
Reference: [MS] Malykhin V.I., Shakmatov D.D.: Cartesian products of Fréchet topological groups and function spaces.Acta Math. Hung. 60 (1992), 207-215. MR 1177675
Reference: [MN] McCoy R.A., Ntanty I.: Topological Properties of Spaces of Continuous functions.Lecture Notes in Math. 1315, Springer Verlag, 1980.
Reference: [M] Miller A.W.: There are no $Q$-points in Laver's model for the Borel conjecture.Proc. Amer. Math. Soc. 78 (1980), 103-106. Zbl 0439.03035, MR 0548093
Reference: [N] Nyikos P.J.: Metrizability and the Fréchet-Urysohn property in topological groups.Proc. Amer. Math. Soc. 83 (1981), 793-801. Zbl 0474.22001, MR 0630057
Reference: [Py] Pytkeev E.G.: On sequentiality of spaces of continuous functions.Russian Math. Surveys 37 (1982), 190-191. MR 0676634
Reference: [S] Sakai M.: Property $C''$ and function spaces.Proc. Amer. Math. Soc. 104 (1988), 917-919. Zbl 0691.54007, MR 0964873
Reference: [V] Vopěnka P.: The construction of models of set theory by the method of ultraproducts.Z. Math. Logik Grundlagen Math. 8 (1962), 293-304. MR 0146085
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-4_17.pdf 310.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo