Previous |  Up |  Next

Article

Title: Minimax control of nonlinear evolution equations (English)
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 1
Year: 1995
Pages: 39-56
.
Category: math
.
Summary: In this paper we study the minimax control of systems governed by a nonlinear evolution inclusion of the subdifferential type. Using some continuity and lower semicontinuity results for the solution map and the cost functional respectively, we are able to establish the existence of an optimal control. The abstract results are then applied to obstacle problems, semilinear systems with weakly varying coefficients (e.g\. oscillating coefficients) and differential variational inequalities. (English)
Keyword: minimax problem
Keyword: optimal control
Keyword: subdifferential
Keyword: strong solution
Keyword: Mosco convergence
Keyword: obstacle problems
Keyword: differential variational inequalities
MSC: 34G20
MSC: 34H05
MSC: 49J20
MSC: 49J27
MSC: 49J35
MSC: 49K35
MSC: 49N15
idZBL: Zbl 1053.49004
idMR: MR1334413
.
Date available: 2009-01-08T18:15:56Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118731
.
Reference: [1] Attouch H.: Variational Convergence for Functionals and Operators.Pitman, London, 1984. MR 0773850
Reference: [2] Balder E.: Necessary and sufficient conditions for $L_1$-strong-weak lower semicontinuity of integral functionals.Nonlin. Anal. 11 (1987), 1399-1404. MR 0917861
Reference: [3] Berge C.: Espaces Topologiques et Fonctions Multivoques.Dunod, Paris, 1966.
Reference: [4] Brézis H.: Operateurs Maximaux Monotones et Semigroupes de contractions dans les Espaces de Hilbert.North Holland, Amsterdam, 1973.
Reference: [5] Brézis H.: Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations.in Contributions to Nonlinear Functional Analysis, ed. by E. Zarantonello, Academic Press, New York, 1971, pp. 101-156. MR 0394323
Reference: [6] Cornet B.: Existence of slow solutions for a class of differential inclusions.J. Math. Anal. Appl. 96 (1983), 130-147. Zbl 0558.34011, MR 0717499
Reference: [7] Dal Maso G.: An Introduction to $\Gamma $-convergence.Birkhäuser, Boston, 1993. Zbl 0816.49001, MR 1201152
Reference: [8] Krasnosel'skii M.A., Pokrovskii A.V.: Systems with Hysteresis.Springer-Verlag, New York, 1988. Zbl 0665.47038
Reference: [9] Kenmochi N.: Some nonlinear parabolic variational inequalities.Israel J. Math. 22 (1975), 304-331. MR 0399662
Reference: [10] Moreau J.-J.: Evolution problem associated with a moving convex set in a Hilbert space.J. Differential Equations 26 (1977), 347-374. MR 0508661
Reference: [11] Mosco U.: Convergence of convex sets and of solutions of variational inequalities.Advances in Math. 3 (1969), 510-585. Zbl 0192.49101, MR 0298508
Reference: [12] Papageorgiou N.S.: On evolution inclusions associated with time dependent convex subdifferentials.Comment. Math. Univ. Carolinae 31 (1990), 517-527. Zbl 0711.34076, MR 1078486
Reference: [13] Wagner D.: Survey of measurable selection theorems.SIAM J. Control Optim. 15 (1977), 859-903. Zbl 0407.28006, MR 0486391
Reference: [14] Yamada Y.: On evolution equations generated by subdifferential operators.J. Fac. Sci. Univ. Tokyo 23 (1976), 491-515. Zbl 0343.34053, MR 0425701
Reference: [15] Yotsutani S.: Evolution equations associated with subdifferentials.J. Math. Soc. Japan 31 (1978), 623-646. MR 0544681
Reference: [16] Zhikov V., Kozlov S., Oleinik O., Ngoan K.: Averaging and $G$-convergence of differential operators.Russian Math. Surveys 34 (1979), 69-147. MR 0562800
Reference: [17] Ahmed N.U.: Optimization and Identification of Systems Governed by Evolution Equations on Banach Spaces.Longman Publ. Co., Essex, United Kingdom, 1988. MR 0982263
Reference: [18] Ahmed N.U.: Optimal control of infinite dimensional uncertain systems.J. Optim. Th. Appl. 80 (1994), 261-272. Zbl 0798.49032, MR 1259659
Reference: [19] Tanimoto S.: Duality in the optimal control of non-well posed distributed systems.J. Math. Anal. Appl. 171 (1992), 277-282. Zbl 0765.49002, MR 1192506
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-1_8.pdf 290.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo