Previous |  Up |  Next

Article

Title: Coincidence points and maximal elements of multifunctions on convex spaces (English)
Author: Park, Sehie
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 1
Year: 1995
Pages: 57-67
.
Category: math
.
Summary: Generalized and unified versions of coincidence or maximal element theorems of Fan, Yannelis and Prabhakar, Ha, Sessa, Tarafdar, Rim and Kim, Mehta and Sessa, Kim and Tan are obtained. Our arguments are based on our recent works on a broad class of multifunctions containing composites of acyclic maps defined on convex subsets of Hausdorff topological vector spaces. (English)
Keyword: convex space
Keyword: polytope
Keyword: multifunction (map)
Keyword: upper semicontinuous (u.s.c.)
Keyword: lower semicontinuous (l.s.c.)
Keyword: compact map
Keyword: acyclic
Keyword: Kakutani map
Keyword: acyclic map
Keyword: admissible class
Keyword: almost $p$-affine
Keyword: almost $p$-quasiconvex
Keyword: maximal element
MSC: 47H04
MSC: 47H10
MSC: 49A40
MSC: 49J27
MSC: 49J40
MSC: 54C60
MSC: 54H25
MSC: 55M20
idZBL: Zbl 0829.47050
idMR: MR1334414
.
Date available: 2009-01-08T18:16:01Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118732
.
Reference: [Be] Ben-El-Mechaiekh H.: The coincidence problem for compositions of set-valued maps.Bull. Austral. Math. Soc. 41 (1990), 421-434. Zbl 0727.54019, MR 1071044
Reference: [BD1] Ben-El-Mechaiekh H., Deguire P.: Approximation of non-convex set-valued maps.C. R. Acad. Sci. Paris 312 (1991), 379-384. Zbl 0719.54053, MR 1096616
Reference: [BD2] Ben-El-Mechaiekh H., Deguire P.: General fixed point theorems for non-convex set-valued maps.C. R. Acad. Sci. Paris 312 (1991), 433-438. Zbl 0795.47036, MR 1096627
Reference: [BD3] Ben-El-Mechaiekh H., Deguire P.: Approachability and fixed points for non-convex set-valued maps.J. Math. Anal. Appl. 170 (1992), 477-500. Zbl 0762.54033, MR 1188567
Reference: [BDG] Ben-El-Mechaiekh H., Deguire P., Granas A.: Points fixes et coincidences pour les fonctions multivoques, II (Applications de type $\varphi$ et $\varphi^*$).C. R. Acad. Sci. Paris 295 (1982), 381-384. MR 0684731
Reference: [BK] Bohnenblust H.F., Karlin S.: On a theorem of Ville.in ``Contributions to the Theory of Games," Ann. of Math. Studies, No.24, pp.155-160, Princeton Univ. Press, 1950. Zbl 0041.25701, MR 0041415
Reference: [Br] Brouwer L.E.J.: Über Abbildungen von Mannigfaltigkeiten.Math. Ann. 71 (1912), 97-115. MR 1511644
Reference: [D] Dzedzej Z.: Fixed point index theory for a class of nonacyclic multivalued maps.Dissertationes Math. 253 (1985), 53pp. Zbl 0592.55001, MR 0839694
Reference: [F1] Ky Fan: Fixed-point and minimax theorems in locally convex topological linear spaces.Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121-126. Zbl 0047.35103, MR 0047317
Reference: [F2] Ky Fan: A generalization of Tychonoff's fixed point theorems.Math. Ann. 142 (1961), 305-310. MR 0131268
Reference: [F3] Ky Fan: Sur un théorème minimax.C. R. Acad. Sci. Paris 259 (1964), 3925-3928. Zbl 0138.37304, MR 0174955
Reference: [G] Glicksberg I.L.: A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points.Proc. Amer. Math. Soc. 3 (1952), 170-174. Zbl 0163.38301, MR 0046638
Reference: [Go] Górniewicz L.: Homological methods in fixed point theory of multivalued maps.Dissertationes Math. 129 (1976), 71pp. MR 0394637
Reference: [GL] Granas A., Liu F.-C.: Coincidences for set-valued maps and minimax inequalities.J. Math. Pures et Appl. 65 (1986), 119-148. Zbl 0659.49007, MR 0867668
Reference: [Ha] Ha C.-W.: Extensions of two fixed point theorems of Ky Fan.Math. Z. 190 (1985), 13-16. Zbl 0551.47024, MR 0793344
Reference: [Hi] Himmelberg C.J.: Fixed points of compact multifunctions.J. Math. Anal. Appl. 38 (1972), 205-207. Zbl 0225.54049, MR 0303368
Reference: [K] Kakutani S.: A generalization of Brouwer's fixed-point theorem.Duke Math. J. 8 (1941), 457-459. Zbl 0061.40304, MR 0004776
Reference: [Ki] Kim W.K.: Existence of maximal elements and equilibrium for a non-paracompact $N$-person game.Proc. Amer. Math. Soc. 116 (1992), 797-807. MR 1123657
Reference: [KT] Kim W.K., Tan K.-K.: A variational inequality in non-compact sets and its applications.Bull. Austral. Math. Soc. 46 (1992), 139-148. Zbl 0747.47037, MR 1170448
Reference: [KKM] Knaster B., Kuratowski C., Mazurkiewicz S.: Ein Beweis des Fixpunktsatzes für $n$-dimensionale Simplexe.Fund. Math. 14 (1929), 132-137.
Reference: [L] Lessonde M.: Réduction du cas multivoque au cas univoque dans les problèmes de coïncidence.in ``Fixed Point Theory and Applications'' (M.A. Théra and J.-B. Baillon, Eds.), pp.293-302, Longman Scientific & Technical, Essex, 1991. MR 1122836
Reference: [Le] Levine N.: A decomposition of continuity in topological spaces.Amer. Math. Monthly 68 (1961), 44-46. Zbl 0100.18601, MR 0126252
Reference: [M1] Mehta G.: Fixed points, equilibria and maximal elements in linear topological spaces.Comment. Math. Univ. Carolinae 28 (1987), 377-385. Zbl 0632.47041, MR 0904761
Reference: [M2] Mehta G.: Weakly lower demicontinuous preference maps.Economics Letters 23 (1987), 15-18. MR 0895251
Reference: [MS] Mehta G., Sessa S.: Coincidence theorems and maximal elements in topological vector spaces.Math. Japonica 37 (1992), 839-845. Zbl 0763.47034, MR 1186550
Reference: [Mi] Michael E.: A selection theorem.Proc. Amer. Math. Soc. 17 (1966), 1404-1406. Zbl 0178.25902, MR 0203702
Reference: [P1] Park Sehie: Fixed point theory of multifunctions in topological vector spaces.J. Korean Math. Soc. 29 (1992), 191-208. Zbl 0758.47048, MR 1157308
Reference: [P2] Park Sehie: Fixed point theory of multifunctions in topological vector spaces II.J. Korean Math. Soc. 30 (1993), 413-431. Zbl 0797.47029, MR 1239332
Reference: [P3] Park Sehie: Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps.J. Korean Math. Soc. 31 (1994), 493-519. Zbl 0829.49002, MR 1297433
Reference: [P4] Park Sehie: Fixed points of acyclic maps on topological vector spaces.Proc. 1st World Congress of Nonlinear Analysts. Zbl 0863.47042
Reference: [PB] Park S., Bae J.S.: On zeros and fixed points of multifunctions with non-compact convex domains.Comment. Math. Univ. Carolinae 34 (1993), 257-264. MR 1241735
Reference: [PSW] Park S., Singh S.P., Watson B.: Some fixed point theorems for composites of acyclic maps.Proc. Amer. Math. Soc. 121 (1994), 1151-1158. Zbl 0806.47053, MR 1189547
Reference: [RK] Rim D.I., Kim W.K.: A fixed point theorem and existence of equilibrium for abstract economies.Bull. Austral. Math. Soc. 45 (1992), 385-394. Zbl 0745.90015, MR 1165145
Reference: [S1] Schauder J.: Zur Theorie stetiger Abbildungen in Funktionalräumen.Math. Z. 26 (1927), 47-65. MR 1544841
Reference: [S2] Schauder J.: Der Fixpunktsatz in Funktionalräumen.Studia Math. 2 (1930), 171-180.
Reference: [Se] Sessa S.: Some remarks and applications of an extension of a lemma of Ky Fan.Comment. Math. Univ. Carolinae 29 (1988), 567-575. Zbl 0674.47041, MR 0972839
Reference: [Ta] Tarafdar E.: An extension of Fan's fixed point theorem and equilibrium point of an abstract economy.Comment. Math. Univ. Carolinae 31 (1990), 723-730. Zbl 0745.47046, MR 1091369
Reference: [Ty] Tychonoff A.: Ein Fixpunktsatz.Math. Ann. 111 (1935), 767-776. Zbl 0012.30803, MR 1513031
Reference: [YP] Yannelis N.C., Prabhakar N.: Existence of maximal elements and equilibria in linear topological spaces.J. Math. Economics 12 (1983), 233-245. Zbl 0536.90019, MR 0743037
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-1_9.pdf 228.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo