Previous |  Up |  Next

Article

Title: $\omega^\omega$-directedness and a question of E. Michael (English)
Author: Daniels, Peg
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 1
Year: 1995
Pages: 115-121
.
Category: math
.
Summary: We define $\omega ^{\omega }$-directedness, investigate various properties to determine whether they have this property or not, and use our results to obtain easier proofs of theorems due to Laurence and Alster concerning the existence of a Michael space, i.e\. a Lindelöf space whose product with the irrationals is not Lindelöf. (English)
Keyword: Michael space
Keyword: Lindelöf
MSC: 03E35
MSC: 54A35
MSC: 54G20
idZBL: Zbl 0866.54007
idMR: MR1334419
.
Date available: 2009-01-08T18:16:23Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118737
.
Reference: [A] Alster K.: On the product of a Lindelöf space with the space of irrationals under Martin's Axiom.Proc. Amer. Math. Soc. 110 (1990), 543-547. MR 0993736
Reference: [K] Kunen K.: Set Theory.North-Holland, Amsterdam, 1980. Zbl 0960.03033, MR 0597342
Reference: [L] Laurence L.B.: The influence of a small cardinal on the product of a Lindelöf space and the irrationals.Proc. Amer. Math. Soc. 110 (1990), 535-542. MR 1021211
Reference: [M] Michael E.: Paracompactness and the Lindelöf property in finite and countable Cartesian products.Comp. Math. 23 (1971), 199-214. Zbl 0216.44304, MR 0287502
Reference: [vD] van Douwen E.K.: The integers and topology.in Handbook of Set-Theoretic Topology, ed. K. Kunen and J.E. Vaughan, North Holland, Amsterdam, 1984. Zbl 0561.54004, MR 0776619
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-1_14.pdf 202.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo