Article
Keywords:
frame; $\sigma$-frame; realcompactification
Summary:
We give a construction of Wallman-type realcompactifications of a frame $L$ by considering regular sub $\sigma$-frames the join of which generates $L$. In particular, we show that the largest such regular sub $\sigma$-frame gives rise to the universal realcompactification of $L$.
References:
[1] Banaschewski B., Gilmour C.R.A.:
Stone-Čech compactification and dimension theory for regular $\sigma$-frames. J. London Math. Soc. 39 (1989), 1-8.
MR 0989914 |
Zbl 0675.06005
[2] Gilmour C.R.A.:
Realcompactifications through zero-set spaces. Quaestiones Math. 6 (1983), 73-95.
MR 0700241 |
Zbl 0521.54012
[3] Gilmour C.R.A.:
Realcompact spaces and regular $\sigma$-frames. Math. Proc. Camb. Phil. Soc. 96 (1984), 73-79.
MR 0743702 |
Zbl 0547.54021
[4] Johnstone P.T.:
Stone Spaces. Cambridge Studies in Advanced Math. 3, Cambridge Univ. Press, 1982.
MR 0698074 |
Zbl 0586.54001
[5] Madden J., Vermeer J.:
Lindelöf locales and realcompactness. Math. Proc. Camb. Phil. Soc. 99 (1986), 473-480.
MR 0830360 |
Zbl 0603.54021
[6] G. Schlitt:
${\Bbb N}$-Compact frames and applications. Doctoral thesis, McMaster University, 1990.
MR 1118300