Previous |  Up |  Next

Article

Title: Realcompactification of frames (English)
Author: Marcus, Nizar
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 2
Year: 1995
Pages: 347-356
.
Category: math
.
Summary: We give a construction of Wallman-type realcompactifications of a frame $L$ by considering regular sub $\sigma$-frames the join of which generates $L$. In particular, we show that the largest such regular sub $\sigma$-frame gives rise to the universal realcompactification of $L$. (English)
Keyword: frame
Keyword: $\sigma$-frame
Keyword: realcompactification
MSC: 18A99
MSC: 18D35
MSC: 54D20
MSC: 54D35
MSC: 54D52
MSC: 54D60
MSC: 54J05
idZBL: Zbl 0840.54027
idMR: MR1357534
.
Date available: 2009-01-08T18:18:19Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118761
.
Reference: [1] Banaschewski B., Gilmour C.R.A.: Stone-Čech compactification and dimension theory for regular $\sigma$-frames.J. London Math. Soc. 39 (1989), 1-8. Zbl 0675.06005, MR 0989914
Reference: [2] Gilmour C.R.A.: Realcompactifications through zero-set spaces.Quaestiones Math. 6 (1983), 73-95. Zbl 0521.54012, MR 0700241
Reference: [3] Gilmour C.R.A.: Realcompact spaces and regular $\sigma$-frames.Math. Proc. Camb. Phil. Soc. 96 (1984), 73-79. Zbl 0547.54021, MR 0743702
Reference: [4] Johnstone P.T.: Stone Spaces.Cambridge Studies in Advanced Math. 3, Cambridge Univ. Press, 1982. Zbl 0586.54001, MR 0698074
Reference: [5] Madden J., Vermeer J.: Lindelöf locales and realcompactness.Math. Proc. Camb. Phil. Soc. 99 (1986), 473-480. Zbl 0603.54021, MR 0830360
Reference: [6] G. Schlitt: ${\Bbb N}$-Compact frames and applications.Doctoral thesis, McMaster University, 1990. MR 1118300
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-2_13.pdf 221.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo