Previous |  Up |  Next

Article

Title: On the asymmetric divisor problem with congruence conditions (English)
Author: Kühleitner, Manfred
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 1
Year: 1996
Pages: 99-116
.
Category: math
.
Summary: A certain generalized divisor function $d^*(n)$ is studied which counts the number of factorizations of a natural number $n$ into integer powers with prescribed exponents under certain congruence restrictions. An $\Omega$-estimate is established for the remainder term in the asymptotic for its Dirichlet summatory function. (English)
Keyword: multidimensional asymmetric divisor problems
MSC: 11M06
MSC: 11M35
MSC: 11N37
MSC: 11N69
MSC: 11P21
idZBL: Zbl 0852.11052
idMR: MR1396163
.
Date available: 2009-01-08T18:22:21Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118815
.
Reference: [1] Apostol T.M.: Introduction to analytic number theory.New York-Heidelberg-Berlin, Springer, 1976. Zbl 1154.11300, MR 0434929
Reference: [2] Berndt B.: On the average order of a class of arithmetic functions, I.J. Number Theory 3 (1971), 184-203. MR 0284409
Reference: [3] Berndt B.: On the average order of a class of arithmetic functions, II.J. Number Theory 3 184-203 (1971). MR 0284409
Reference: [4] Chandrasekharan K., Narasimhan R.: The approximate functional equation for a class of zeta-functions.Math. Ann. 152 30-64 (1963). Zbl 0116.27001, MR 0153643
Reference: [5] Hafner J.L.: The distribution and average order of the coefficients of Dedekind $\zeta$ functions.J. Number Theory 17 183-190 (1983). Zbl 0515.10042, MR 0716941
Reference: [6] Hafner J.L.: New omega results in a weighted divisor problem.J. Number Theory 28 240-257 (1988). Zbl 0635.10037, MR 0932373
Reference: [7] Ivić A.: The Riemann zeta-function.New York, 1966.
Reference: [8] Krätzel E.: Lattice Points.Dordrecht-Boston-London, Kluwer, 1988. MR 0998378
Reference: [9] Landau E.: Elementary Number Theory. $2^{nd}$ ed., New York 1966..
Reference: [10] Nowak W.G.: On the Piltz divisor problem with congruence conditions.Proc. $1^{st}$ CNTA Conference, Banff, 1988, (ed. R.A. Mollin) 455-469 (1990). Zbl 0731.11052, MR 1106679
Reference: [11] Nowak W.G.: On the Piltz divisor problem with congruence conditions II.Abh. Math. Sem. Univ. Hamburg 60 153-163 (1990). Zbl 0731.11052, MR 1087125
Reference: [12] Nowak W.G.: On the general asymmetric divisor problem.Abh. Math. Sem. Hamburg 65 (1995), to appear. Zbl 0854.11048, MR 1359135
Reference: [13] Steinig J.: On an integral connected with the average order of a class of arithmetical functions.J. Number Theory 4 463-468 (1972). Zbl 0241.10028, MR 0306096
Reference: [14] Szegö P., Walfisz A.: Über das Piltzsche Teilerproblem in algebraischen Zahlkörpern (Erste Abhandlung).Math. Z. 26 138-156 (1927). MR 1544849
Reference: [15] Szegö P., Walfisz A.: Über das Piltzsche Teilerproblem in algebraischen Zahlkörpern (Zweite Abhandlung).Math. Z. 26 467-486 (1927). MR 1544868
Reference: [16] Titchmarsh E.C.: The theory of the Riemann zeta-function.Oxford, 1951. Zbl 0601.10026, MR 0046485
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-1_6.pdf 278.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo