Previous |  Up |  Next

Article

Title: On the value distribution of a class of arithmetic functions (English)
Author: Nowak, Werner Georg
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 1
Year: 1996
Pages: 117-134
.
Category: math
.
Summary: This article deals with the value distribution of multiplicative prime-in\-de\-pendent arithmetic functions $(\alpha (n))$ with $\alpha (n)=1$ if $n$ is $N$-free ($N\ge2$ a fixed integer), $\alpha (n)>1$ else, and $\alpha (2^n)\to\infty$. An asymptotic result is established with an error term probably definitive on the basis of the present knowledge about the zeros of the zeta-function. Applications to the enumerative functions of Abelian groups and of semisimple rings of given finite order are discussed. (English)
Keyword: arithmetic functions
Keyword: value distribution
Keyword: finite Abelian groups
MSC: 11K65
MSC: 11N37
MSC: 11N45
MSC: 11N64
idZBL: Zbl 0854.11050
idMR: MR1396164
.
Date available: 2009-01-08T18:22:25Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118816
.
Reference: [1] De Koninck J.M., Ivić A.: Topics in arithmetical functions.North Holland Publ. Co., Amsterdam-New York-Oxford, 1980. MR 0589545
Reference: [2] Ivić A.: The distribution of values of the enumerating function of non-isomorphic Abelian groups of finite order.Arch. Math. 30 (1978), 374-379. MR 0498444
Reference: [3] Ivić A.: The Riemann zeta-function.New York-Chichester, J. Wiley & Sons, 1985. MR 0792089
Reference: [4] Krätzel E.: Die Werteverteilung der Anzahl der nicht-isomorphen abelschen Gruppen endlicher Ordnung und ein verwandtes zahlentheoretisches Problem.Publ. Inst. Math. Belgrade (45) 31 (1982), 93-101. MR 0710948
Reference: [5] Krätzel E.: Lattice Points.Kluwer Acad. Publ., Dordrecht-Boston-London, 1988. MR 0998378
Reference: [6] Krätzel E.: The distribution of values of $a(n)$.Arch. Math. 57 (1991), 47-52. Zbl 0701.11039, MR 1111114
Reference: [7] Krätzel E., Wolke D.: Über die Anzahl der abelschen Gruppen gegebener Ordnung.Analysis 14 (1994), 257-266. MR 1302542
Reference: [8] Kühleitner M.: Comparing the number of Abelian groups and of semisimple rings of a given order.Math. Slovaca, to appear. MR 1390704
Reference: [9] Nowak W.G.: Sums of reciprocals of general divisor functions and the Selberg divisor problem.Abh. Math. Sem. Hamburg 61 (1991), 163-173. Zbl 0739.11037, MR 1138281
Reference: [10] Nowak W.G.: On the average number of finite Abelian groups of a given order.Ann. sc. math. Québec 15 (1991), 193-202. Zbl 0749.11043, MR 1151477
Reference: [11] Rieger G.J.: Zum Teilerproblem von Atle Selberg.Math. Nachr. 30 (1965), 181-192. MR 0190105
Reference: [12] Selberg A.: Note on a paper by L.G. Sathe.J. Indian Math. Soc. 18 (1954), 83-87. Zbl 0057.28502, MR 0067143
Reference: [13] Wolke D.: Über die zahlentheoretische Funktion $ømega(n)$.Acta Arith. 55 (1990), 323-331. Zbl 0705.11051, MR 1069186
Reference: [14] Wolke D.: On a problem of A. Rényi.Monatsh. Math. 111 (1991), 323-330. Zbl 0742.11045, MR 1116950
Reference: [15] Wu J.: Sur un probléme de Rényi.Monatsh. Math. 117 (1994), 303-322. Zbl 0818.11037, MR 1279119
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-1_7.pdf 274.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo