Previous |  Up |  Next

Article

Title: Booleanization of uniform frames (English)
Author: Banaschewski, B.
Author: Pultr, A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 1
Year: 1996
Pages: 135-146
.
Category: math
.
Summary: Booleanization of frames or uniform frames, which is not functorial under the basic choice of morphisms, becomes functorial in the categories with weakly open homomorphisms or weakly open uniform homomorphisms. Then, the construction becomes a reflection. In the uniform case, moreover, it also has a left adjoint. In connection with this, certain dual equivalences concerning uniform spaces and uniform frames arise. (English)
Keyword: Booleanization
Keyword: uniform frame
Keyword: uniform space
Keyword: weakly open maps and homomorphisms
MSC: 06D10
MSC: 06E15
MSC: 18A40
MSC: 18B30
MSC: 54B30
MSC: 54C10
MSC: 54E15
idZBL: Zbl 0848.06009
idMR: MR1396165
.
Date available: 2009-01-08T18:22:30Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118817
.
Reference: [1] Banaschewski B.: Compact regular frames and the Sikorski Theorem.Kyungpook J. Math. 28 (1988), 1-14. Zbl 0676.03029, MR 0986848
Reference: [2] Banaschewski B., Pultr A.: Samuel compactification and completion of uniform frames.Math. Proc. Cambridge Phil. Soc. 108 (1990), 63-78. Zbl 0733.54020, MR 1049760
Reference: [3] Banaschewski B., Pultr A.: A Stone duality for metric spaces.Canad. Math. Soc. Conf. Proceedings 13 (1992), 33-42. Zbl 0789.54035, MR 1192138
Reference: [4] Banaschewski B., Pultr A.: Variants of openness.Appl. Categ. Structures 2 (1994), 331-350. Zbl 0810.54017, MR 1300720
Reference: [5] Banaschewski B., Pultr A.: Booleanization.preprint. Zbl 0848.06010, MR 1383446
Reference: [6] Glivenko V.: Sur quelque points de la logique de M. Brouwer.Acad. Royal Belg. Bull. Sci. 15 (1929), 183-188.
Reference: [7] Herrlich H., Strecker G.E.: H-closed spaces and reflective subcategories.Math. Annalen 177 (1968), 302-309. Zbl 0157.29104, MR 0234427
Reference: [8] Isbell J.R.: Atomless parts of spaces.Math. Scand. 31 (1972), 5-32. Zbl 0246.54028, MR 0358725
Reference: [9] Johnstone P.T.: Stone Spaces.Cambridge University Press, Cambridge, 1982. Zbl 0586.54001, MR 0698074
Reference: [10] Johnstone P.T.: Factorization theorems for geometric morphisms, II..Springer Lecture Notes in Math. 915 (1982), 216-233. Zbl 0477.18006, MR 0659894
Reference: [11] Kříž I.: A direct description of uniform completion in locales and a characterization of LT groups.Cahiers Top. et Géom. Diff. Cat. 27 (1986), 19-34. MR 0845407
Reference: [12] Mioduszewski J., Rudolf L.: H-closed and extremally disconnected Hausdorff spaces.Dissertationes Math. 66 (1969). Zbl 0204.22404, MR 0256353
Reference: [13] Vickers S.: Topology via Logic.Cambridge Tracts in Theor. Comp. Sci., Number 5, Cambridge University Press, Cambridge, 1985. Zbl 0922.54002, MR 1002193
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-1_8.pdf 237.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo