[1] Comfort W.W.: 
Topological Groups. Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp. 1143-1263. 
MR 0776643 | 
Zbl 1071.54019[2] Comfort W.W.: 
Problems on topological groups and other homogeneous spaces. Open Problems in Topology (J. van Mill and G. M. Reed, eds.), North-Holland, 1990, pp. 311-347. 
MR 1078657[3] Comfort W.W., Hofmann K.H., Remus D.: 
Topological groups and semigroups. Recent Progress in General Topology (M. Hušek and J. van Mill, eds.), Elsevier Science Publishers, 1992, pp. 57-144. 
MR 1229123 | 
Zbl 0798.22001[4] Comfort W.W., Ross K.A.: 
Pseudocompactness and uniform continuity in topological groups. Pacific J. Math. 16.3 (1966), 483-496. 
MR 0207886 | 
Zbl 0214.28502[5] van Douwen E.K.: 
The product of two countably compact topological groups. Trans. Amer. Math. Soc. 262 (Dec. 1980), 417-427. 
MR 0586725 | 
Zbl 0453.54006[6] Hajnal A., Juhász I.: 
A separable normal topological group need not be Lindelöf. Gen. Top. and its Appl. 6 (1976), 199-205. 
MR 0431086[7] Hart K.P., van Mill J.: 
A countably compact $H$ such that $H\times H$ is not countably compact. Trans. Amer. Math. Soc. 323 (Feb. 1991), 811-821. 
MR 0982236[8] Tkachenko M.G.: 
Countably compact and pseudocompact topologies on free abelian groups. Izvestia VUZ. Matematika 34 (1990), 68-75. 
MR 1083312 | 
Zbl 0714.22001[9] Tomita A.H.: Between countable and sequential compactness in free abelian group. preprint.
[10] Tomita A.H.: A group under $MA_{countable}$ whose square is countably compact but whose cube is not. preprint.
[11] Tomita A.H.: The Wallace Problem: a counterexample from $M A_{countable}$ and $p$-compactness. to appear in Canadian Math. Bulletin.
[12] Weiss W.: 
Versions of Martin's Axiom. Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp. 827-886. 
MR 0776638 | 
Zbl 0571.54005