Previous |  Up |  Next

Article

Title: On finite powers of countably compact groups (English)
Author: Tomita, Artur Hideyuki
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 3
Year: 1996
Pages: 617-626
.
Category: math
.
Summary: We will show that under ${M\kern -1.8pt A\kern 0.2pt }_{countable}$ for each $k \in \Bbb N$ there exists a group whose $k$-th power is countably compact but whose $2^k$-th power is not countably compact. In particular, for each $k \in \Bbb N$ there exists $l \in [k,2^k)$ and a group whose $l$-th power is countably compact but the $l+1$-st power is not countably compact. (English)
Keyword: countable compactness
Keyword: ${M\kern -1.8pt A\kern 0.2pt }_{countable}$
Keyword: topological groups
Keyword: finite powers
MSC: 22A05
MSC: 54A35
MSC: 54B10
MSC: 54D20
MSC: 54H11
idZBL: Zbl 0881.54022
idMR: MR1426926
.
Date available: 2009-01-08T18:26:37Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118868
.
Reference: [1] Comfort W.W.: Topological Groups.Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp. 1143-1263. Zbl 1071.54019, MR 0776643
Reference: [2] Comfort W.W.: Problems on topological groups and other homogeneous spaces.Open Problems in Topology (J. van Mill and G. M. Reed, eds.), North-Holland, 1990, pp. 311-347. MR 1078657
Reference: [3] Comfort W.W., Hofmann K.H., Remus D.: Topological groups and semigroups.Recent Progress in General Topology (M. Hušek and J. van Mill, eds.), Elsevier Science Publishers, 1992, pp. 57-144. Zbl 0798.22001, MR 1229123
Reference: [4] Comfort W.W., Ross K.A.: Pseudocompactness and uniform continuity in topological groups.Pacific J. Math. 16.3 (1966), 483-496. Zbl 0214.28502, MR 0207886
Reference: [5] van Douwen E.K.: The product of two countably compact topological groups.Trans. Amer. Math. Soc. 262 (Dec. 1980), 417-427. Zbl 0453.54006, MR 0586725
Reference: [6] Hajnal A., Juhász I.: A separable normal topological group need not be Lindelöf.Gen. Top. and its Appl. 6 (1976), 199-205. MR 0431086
Reference: [7] Hart K.P., van Mill J.: A countably compact $H$ such that $H\times H$ is not countably compact.Trans. Amer. Math. Soc. 323 (Feb. 1991), 811-821. MR 0982236
Reference: [8] Tkachenko M.G.: Countably compact and pseudocompact topologies on free abelian groups.Izvestia VUZ. Matematika 34 (1990), 68-75. Zbl 0714.22001, MR 1083312
Reference: [9] Tomita A.H.: Between countable and sequential compactness in free abelian group.preprint.
Reference: [10] Tomita A.H.: A group under $MA_{countable}$ whose square is countably compact but whose cube is not.preprint.
Reference: [11] Tomita A.H.: The Wallace Problem: a counterexample from $M A_{countable}$ and $p$-compactness.to appear in Canadian Math. Bulletin.
Reference: [12] Weiss W.: Versions of Martin's Axiom.Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp. 827-886. Zbl 0571.54005, MR 0776638
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-3_19.pdf 236.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo