Title:
|
On finite powers of countably compact groups (English) |
Author:
|
Tomita, Artur Hideyuki |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
37 |
Issue:
|
3 |
Year:
|
1996 |
Pages:
|
617-626 |
. |
Category:
|
math |
. |
Summary:
|
We will show that under ${M\kern -1.8pt A\kern 0.2pt }_{countable}$ for each $k \in \Bbb N$ there exists a group whose $k$-th power is countably compact but whose $2^k$-th power is not countably compact. In particular, for each $k \in \Bbb N$ there exists $l \in [k,2^k)$ and a group whose $l$-th power is countably compact but the $l+1$-st power is not countably compact. (English) |
Keyword:
|
countable compactness |
Keyword:
|
${M\kern -1.8pt A\kern 0.2pt }_{countable}$ |
Keyword:
|
topological groups |
Keyword:
|
finite powers |
MSC:
|
22A05 |
MSC:
|
54A35 |
MSC:
|
54B10 |
MSC:
|
54D20 |
MSC:
|
54H11 |
idZBL:
|
Zbl 0881.54022 |
idMR:
|
MR1426926 |
. |
Date available:
|
2009-01-08T18:26:37Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118868 |
. |
Reference:
|
[1] Comfort W.W.: Topological Groups.Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp. 1143-1263. Zbl 1071.54019, MR 0776643 |
Reference:
|
[2] Comfort W.W.: Problems on topological groups and other homogeneous spaces.Open Problems in Topology (J. van Mill and G. M. Reed, eds.), North-Holland, 1990, pp. 311-347. MR 1078657 |
Reference:
|
[3] Comfort W.W., Hofmann K.H., Remus D.: Topological groups and semigroups.Recent Progress in General Topology (M. Hušek and J. van Mill, eds.), Elsevier Science Publishers, 1992, pp. 57-144. Zbl 0798.22001, MR 1229123 |
Reference:
|
[4] Comfort W.W., Ross K.A.: Pseudocompactness and uniform continuity in topological groups.Pacific J. Math. 16.3 (1966), 483-496. Zbl 0214.28502, MR 0207886 |
Reference:
|
[5] van Douwen E.K.: The product of two countably compact topological groups.Trans. Amer. Math. Soc. 262 (Dec. 1980), 417-427. Zbl 0453.54006, MR 0586725 |
Reference:
|
[6] Hajnal A., Juhász I.: A separable normal topological group need not be Lindelöf.Gen. Top. and its Appl. 6 (1976), 199-205. MR 0431086 |
Reference:
|
[7] Hart K.P., van Mill J.: A countably compact $H$ such that $H\times H$ is not countably compact.Trans. Amer. Math. Soc. 323 (Feb. 1991), 811-821. MR 0982236 |
Reference:
|
[8] Tkachenko M.G.: Countably compact and pseudocompact topologies on free abelian groups.Izvestia VUZ. Matematika 34 (1990), 68-75. Zbl 0714.22001, MR 1083312 |
Reference:
|
[9] Tomita A.H.: Between countable and sequential compactness in free abelian group.preprint. |
Reference:
|
[10] Tomita A.H.: A group under $MA_{countable}$ whose square is countably compact but whose cube is not.preprint. |
Reference:
|
[11] Tomita A.H.: The Wallace Problem: a counterexample from $M A_{countable}$ and $p$-compactness.to appear in Canadian Math. Bulletin. |
Reference:
|
[12] Weiss W.: Versions of Martin's Axiom.Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp. 827-886. Zbl 0571.54005, MR 0776638 |
. |