Previous |  Up |  Next

Article

Title: On concentrated probabilities on non locally compact groups (English)
Author: Bartoszek, Wojciech
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 3
Year: 1996
Pages: 635-640
.
Category: math
.
Summary: Let $G$ be a Polish group with an invariant metric. We characterize those probability measures $\mu$ on $G$ so that there exist a sequence $g_n \in G$ and a compact set $A \subseteq G$ with \, ${\mu}^{*n} (g_n A) \equiv 1$ \, for all $n$. (English)
Keyword: concentration function
Keyword: random walk
Keyword: Markov operator
Keyword: invariant measure
MSC: 22D40
MSC: 43A05
MSC: 47A35
MSC: 60B15
MSC: 60J15
idZBL: Zbl 0881.22001
idMR: MR1426928
.
Date available: 2009-01-08T18:26:46Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118870
.
Reference: [1] Bartoszek W.: On concentrated probabilities.Ann. Polon. Math. 61.1 (1995), 25-38. Zbl 0856.22006, MR 1318315
Reference: [2] Bartoszek W.: The structure of random walks on semidirect products.Bull. L'Acad. Pol. Sci. ser. Sci. Math. Astr. & Phys. 43.4 (1995), 277-282. Zbl 0849.22006, MR 1414784
Reference: [3] Csiszár I.: On infinite products of random elements and infinite convolutions of probability distributions on locally compact groups.Z. Wahrsch. Verw. Gebiete 5 (1966), 279-299. MR 0205306
Reference: [4] Jaworski W., Rosenblatt J., Willis G.: Concentration functions in locally compact groups.preprint, 17 pages, 1995. Zbl 0854.43001, MR 1399711
Reference: [5] Parthasarathy K.R.: Introduction to Probability and Measure.New Delhi, 1980. Zbl 1075.28001
Reference: [6] Sine R.: Geometric theory of a single Markov operator.Pacif. J. Math. 27.1 (1968), 155-166. Zbl 0281.60083, MR 0240281
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-3_21.pdf 182.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo