Previous |  Up |  Next

Article

Title: Strong tightness as a condition of weak and almost sure convergence (English)
Author: Krupa, Grzegorz
Author: Zieba, Wiesław
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 3
Year: 1996
Pages: 641-650
.
Category: math
.
Summary: A sequence of random elements $\{X_j, j\in J\}$ is called strongly tight if for an arbitrary $\epsilon >0$ there exists a compact set $K$ such that $P\left(\bigcap_{j\in J}[X_j\in K]\right)>1-\epsilon$. For the Polish space valued sequences of random elements we show that almost sure convergence of $\{X_n\}$ as well as weak convergence of randomly indexed sequence $\{X_{\tau}\}$ assure strong tightness of $\{X_n, n\in \Bbb N\}$. For $L^1$ bounded Banach space valued asymptotic martingales strong tightness also turns out to the sufficient condition of convergence. A sequence of r.e. $\{X_n, n\in \Bbb N\}$ is said to converge essentially with respect to law to r.e. $X$ if for all sets of continuity of measure $P\circ X^{-1}, P\left(\limsup_{n\to \infty}[X_n\in A]\right) =P\left(\liminf_{n\to \infty}[X_n\in A]\right)=P([x\in A])$. Conditions under which $\{X_n\}$ is essentially w.r.t. law convergent and relations to strong tightness are investigated. (English)
Keyword: almost sure convergence
Keyword: stopping times
Keyword: tightness
MSC: 60B10
MSC: 60G40
idZBL: Zbl 0881.60003
idMR: MR1426929
.
Date available: 2009-01-08T18:26:52Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118871
.
Reference: [1] Austin D.G., Edgar G.A., Ionescu Tulcea A.: Pointwise convergence in terms of expectations.Z. Wahrscheinlichkeitsteorie verw. Gebiete 30 (1974), 17-26. Zbl 0276.60034, MR 0358945
Reference: [2] Baxter J.R.: Pointwise in terms of weak convergence.Proc. Amer. Math. Soc. 46 (1974), 395-398. Zbl 0329.60029, MR 0380968
Reference: [3] Billingsley P.: Convergence of Probability Measure.Wiley New York (1968). MR 0233396
Reference: [4] Diestel J., Uhl J.J., Jr.: Vector Measures.AMS Mathematical Surveys 15 (1979).
Reference: [5] Edgar G.A., Suchestone L.: Amarts: A Class of Asymptotic Martingales. A Discrete Parameter.Journal of Multivariate Analysis 6.2 (1976). MR 0413251
Reference: [6] Kruk Ł., Ziȩba W.: On tightness of randomly indexed sequences of random elements.Bull. Pol. Ac.: Math. 42 (1994), 237-241. MR 1811853
Reference: [7] Neveu J.: Discrete-Parameter Martingales.North-Holland Publishing Company (1975). Zbl 0345.60026, MR 0402915
Reference: [8] Szynal D., Ziȩba W.: On some characterization of almost sure convergence.Bull. Pol. Acad. Sci. 34 (1986), 9-10. MR 0884212
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-3_22.pdf 226.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo