Previous |  Up |  Next

Article

Title: On finite loops whose inner mapping groups have small orders (English)
Author: Niemenmaa, Markku
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 3
Year: 1996
Pages: 651-654
.
Category: math
.
Summary: We investigate the situation that the inner mapping group of a loop is of order which is a product of two small prime numbers and we show that then the loop is soluble. (English)
Keyword: solvability
Keyword: loop
Keyword: group
MSC: 20B25
MSC: 20D10
MSC: 20N05
idZBL: Zbl 0881.20006
idMR: MR1426930
.
Date available: 2009-01-08T18:26:56Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118872
.
Reference: [1] Blackburn N., Huppert B.: Finite Groups III.Springer Verlag, 1982. Zbl 0514.20002, MR 0662826
Reference: [2] Conway J.H.: Atlas of Finite Groups.Oxford, Clarendon Press, 1985. Zbl 0568.20001, MR 0827219
Reference: [3] Huppert B.: Endliche Gruppen I.Springer Verlag, 1967. Zbl 0412.20002, MR 0224703
Reference: [4] Kepka T., Niemenmaa M.: On loops with cyclic inner mapping groups.Arch. Math. 60 (1993), 233-236. MR 1201636
Reference: [5] Niemenmaa M.: Transversals, commutators and solvability in finite groups.Bollettino U.M.I. (7) 9-A (1995), 203-208. Zbl 0837.20026, MR 1324621
Reference: [6] Niemenmaa M., Kepka T.: On multiplication groups of loops.J. Algebra 135 (1990), 112-122. Zbl 0706.20046, MR 1076080
Reference: [7] Niemenmaa M., Kepka T.: On connected transversals to abelian subgroups in finite groups.Bull. London Math. Soc. 24 (1992), 343-346. Zbl 0793.20064, MR 1165376
Reference: [8] Niemenmaa M., Vesanen A.: On subgroups, transversals and commutators.Groups Galway/St. Andrews, 1993, Vol.2, London Math. Soc. Lecture Notes Series 212, 1995, pp. 476-481. Zbl 0862.20023, MR 1337289
Reference: [9] Vesanen A.: On connected transversals in $PSL(2,q)$.Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 84, 1992. Zbl 0744.20058, MR 1150782
Reference: [10] Vesanen A.: The group $PSL(2,q)$ is not the multiplication group of a loop.Comm. Algebra 22.4 (1994), 1177-1195. MR 1261254
Reference: [11] Vesanen A.: Solvable loops and groups.to appear in J. Algebra. MR 1379214
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-3_23.pdf 161.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo