Previous |  Up |  Next

Article

Title: Characterization of sets of determination for parabolic functions on a slab by coparabolic (minimal) thinness (English)
Author: Ranošová, Jarmila
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 4
Year: 1996
Pages: 707-723
.
Category: math
.
Summary: Let $T$ be a positive number or $+\infty$. We characterize all subsets $M$ of $\Bbb R^n \times ]0,T[ $ such that $$ \inf\limits_{X\in \Bbb R^n \times ]0,T[}u(X) = \inf\limits_{X\in M}u(X) \tag{i} $$ for every positive parabolic function $u$ on $\Bbb R^n \times ]0,T[$ in terms of coparabolic (minimal) thinness of the set $M_\delta =\cup_{(x,t)\in M} B^p((x,t),\delta t)$, where $\delta \in (0,1)$ and $B^p((x,t),r)$ is the ``heat ball'' with the ``center'' $(x,t)$ and radius $r$. Examples of different types of sets which can be used instead of ``heat balls'' are given. It is proved that (i) is equivalent to the condition $ \sup_{X\in \Bbb R^n \times \Bbb R^+}u(X) = \sup_{X\in M}u(X) $ for every bounded parabolic function on $\Bbb R^n \times \Bbb R^+$ and hence to all equivalent conditions given in the article [7]. The results provide a parabolic counterpart to results for classical harmonic functions in a ball, see References. (English)
Keyword: heat equation
Keyword: parabolic function
Keyword: Weierstrass kernel
Keyword: set of determination
Keyword: Harnack inequality
Keyword: coparabolic thinness
Keyword: coparabolic minimal thinness
Keyword: heat ball
MSC: 31B10
MSC: 35B05
MSC: 35K05
MSC: 35K10
MSC: 35K15
idZBL: Zbl 0887.35064
idMR: MR1440703
.
Date available: 2009-01-08T18:27:30Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118880
.
Reference: [1] Aikawa H.: Sets of determination for harmonic function in an NTA domains.J. Math. Soc. Japan, to appear. MR 1376083
Reference: [2] Bonsall F.F.: Domination of the supremum of a bounded harmonic function by its supremum over a countable subset.Proc. Edinburgh Math. Soc. 30 (1987), 441-477. Zbl 0658.31001, MR 0908454
Reference: [3] Brzezina M.: On the base and the essential base in parabolic potential theory.Czechoslovak Math. J. 40 (115) (1990), 87-103. Zbl 0712.31001, MR 1032362
Reference: [4] Doob J.L.: Classical Potential Theory and Its Probabilistic Counterpart.Springer-Verlag New York (1984). Zbl 0549.31001, MR 0731258
Reference: [5] Gardiner S.J.: Sets of determination for harmonic function.Trans. Amer. Math. Soc. 338.1 (1993), 233-243. MR 1100694
Reference: [6] Moser J.: A Harnack inequality for parabolic differential equations.Comm. Pure Appl. Math. XVII (1964), 101-134. Zbl 0149.06902, MR 0159139
Reference: [7] Ranošová J.: Sets of determination for parabolic functions on a half-space.Comment. Math. Univ. Carolinae 35 (1994), 497-513. MR 1307276
Reference: [8] Watson A.N.: Thermal capacity.Proc. London Math. Soc. 37.3 (1987), 342-362. MR 0507610
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-4_5.pdf 265.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo