Previous |  Up |  Next

Article

Title: Existence of mild solutions for semilinear equation of evolution (English)
Author: Karczewska, Anna
Author: Wędrychowicz, Stanisław
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 4
Year: 1996
Pages: 695-706
.
Category: math
.
Summary: The aim of this paper is to give an existence theorem for a semilinear equation of evolution in the case when the generator of semigroup of operators depends on time parameter. The paper is a generalization of [2]. Basing on the notion of a measure of noncompactness in Banach space, we prove the existence of mild solutions of the equation considered. Additionally, the applicability of the results obtained to control theory is also shown. The main theorem of the paper allows to characterize the set of controls providing solutions of the system considered. Moreover, the application of the main theorem for elliptic equations is given. (English)
Keyword: semilinear equation of evolution
Keyword: mild solutions
Keyword: measure of noncompactness
Keyword: sublinear measure
MSC: 34A10
MSC: 34G20
MSC: 49E30
MSC: 49J24
MSC: 49J27
idZBL: Zbl 0893.34057
idMR: MR1440702
.
Date available: 2009-01-08T18:27:25Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118879
.
Reference: [1] Banaś J., Goebel K.: Measures of Noncompactness in Banach Spaces.Lect. Notes Pure Appl. Math. Marcel Dekker New York and Basel (1980). MR 0591679
Reference: [2] Banaś J., Hajnosz A., Wȩdrychowicz S.: Some generalization of Szufla's theorem for ordinary differential equations in Banach space.Bull. Pol. Acad. Sci., Math. XXIX , No 9-10 (1981), 459-464. MR 0646334
Reference: [3] Coddington E.A., Levinson N.: Theory of Ordinary Differential Equations.Mc Graw-Hill New York-Toronto-London (1955). Zbl 0064.33002, MR 0069338
Reference: [4] Friedman A.: Partial Differential Equations.Krieger Publishing Company Huntington New York (1976). MR 0454266
Reference: [5] Kato T.: Quasi-linear equations of evolution with application to partial differential equations.Lect. Notes Math. Springer Verlag 448 (1975), 25-70. MR 0407477
Reference: [6] Kuratowski K.: Topologie.Volume II PWN Warszawa (1961). Zbl 0102.37602, MR 0133124
Reference: [7] Pazy A.: A class of semi-linear equations of evolution.Isr. J. Math. 20 (1975), 22-36. Zbl 0305.47022, MR 0374996
Reference: [8] Pazy A.: Semigroup of Linear Operators and Applications to Partial Differential Equations.Springer-Verlag New York (1983). MR 0710486
Reference: [9] Rolewicz S.: Functional Analysis and Control Theory Linear Systems.Reidel Publishing Company Dordrecht (1987). Zbl 0633.93002, MR 0920371
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-4_4.pdf 227.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo