Previous |  Up |  Next

Article

Title: Sequential continuity on dyadic compacta and topological groups (English)
Author: Arhangel'skii, A. V.
Author: Just, W.
Author: Plebanek, G.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 4
Year: 1996
Pages: 775-790
.
Category: math
.
Summary: We study conditions under which sequentially continuous functions on topological spaces and sequentially continuous homomorphisms of topological groups are continuous. (English)
Keyword: sequentially continuous
Keyword: dyadic compactum
Keyword: topological group
Keyword: sequential leader
Keyword: real-valued measurable cardinal
Keyword: completion-regular measure
MSC: 03E35
MSC: 03E55
MSC: 54A25
MSC: 54A35
MSC: 54C08
MSC: 54D30
MSC: 54E45
MSC: 54H11
idZBL: Zbl 0887.54013
idMR: MR1440707
.
Date available: 2009-01-08T18:27:49Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118884
.
Reference: [A1] Arhangel'skii A.V.: The frequency spectrum of a topological space and the product operation (in Russian).Trudy Mosk. Mat. Ob-va 40 (1979), 171-206; English transl.: Trans. Moscow Math. Soc. 40.2 (1981) 163-200. MR 0550259
Reference: [A2] Arhangel'skii A.V.: On countably compact topologies on compact groups and on dyadic compacta.Top. and Appl. 57 (1994), 163-181. MR 1278022
Reference: [A3] Arhangel'skii A.V.: On invariants of character and weight type (in Russian).Trudy Mosk. Mat. Ob-va 38 (1979), 3-23; English transl.: Trans. Moscow Math. Soc. 38.2 (1980), 1-23. MR 0544935
Reference: [AC] AntonovskiĭM., ChudnovskiĭD.: Some questions of general topology and Tichonov semifields II..Russian Math. Surveys 31 (1976), 69-128.
Reference: [B] Booth D.: A Boolean view of sequential compactness.Fund. Math. 85 (1974), 99-102. Zbl 0297.54020, MR 0367926
Reference: [C] Ciesielski K.: Real-valued sequentially continuous functions on the product space $2^\kappa$.unpublished preprint.
Reference: [CR] Comfort W.W., Remus D.: Compact groups of Ulam-measurable cardinality: Partial converses of theorems of Arhangel'skii and Varopoulos.Math. Japonica 39.2 (1994), 203-210. MR 1270627
Reference: [vD] van Douwen E.K.: The integers and topology.in: Handbook of Set-theoretical Topology, K. Kunen and J.E. Vaughan eds., North Holland, 1984, pp.111-167. Zbl 0561.54004, MR 0776619
Reference: [E] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [E1] Engelking R.: Cartesian products and dyadic spaces.Fund. Math. 57.3 (1965), 287-304. Zbl 0173.50603, MR 0196692
Reference: [EK] Engelking R., Karłowicz M.: Some theorems of set theory and their topological consequences.Fund. Math. 57.3 (1965), 275-285. MR 0196693
Reference: [F1] Fremlin D.H.: Measure algebras.in: Handbook of Boolean Algebras, J.D. Monk ed., North Holland, 1989, pp.876-980. Zbl 1165.28002, MR 0991611
Reference: [F2] Fremlin D.H.: Real-valued-measurable cardinals.in: Set Theory of the Reals, H. Judah ed., Israel Mathematical Conference Proceedings 6 (1993) 151-304. Zbl 0839.03038, MR 1234282
Reference: [Gr] Gryllakis C.: Products of completion-regular measures.Proc. Amer. Math. Soc. 103 (1988), 563-568. Zbl 0655.28005, MR 0943085
Reference: [H] Hagler J.: On the structure of $S$ and $C(S)$ for $S$ dyadic.Trans. AMS 213 (1975), 415-428. Zbl 0321.46022, MR 0388062
Reference: [Hal] Halmos P.R.: Measure Theory.Van Nostrand, New York, 1950. Zbl 0283.28001, MR 0033869
Reference: [Hu] Hušek M.: Sequentially continuous homomorphisms on products of topological groups.preprint, October 1995. MR 1397074
Reference: [J] Jech T.: Set Theory.Academic Press, 1978. Zbl 1007.03002, MR 0506523
Reference: [Iv] IvanovskĭL.N.: On a hypothesis of P.S. Alexandroff.Dokl. AN SSSR 123.4 (1958), 785-786.
Reference: [Ku] Kuz'minov V.I.: On a hypothesis of P.S. Alexandroff in the theory of topological groups.Dokl. AN SSSR 125.4 (1959), 727-729. MR 0104753
Reference: [M] Mazur S.: On continuous mappings on Cartesian products.Fund. Math. 39 (1952), 229-238. MR 0055663
Reference: [P1] Plebanek G.: On the space of continuous function on a dyadic set.Mathematika 38 (1991), 42-49. MR 1116683
Reference: [P2] Plebanek G.: Remarks on measurable Boolean algebras and sequential cardinals.Fund. Math. 143 (1993), 11-22. Zbl 0788.28003, MR 1234988
Reference: [Pas] Pasynkov B.A.: Sections over zero-dimensional subsets of quotients of locally compact groups (in Russian).Dokl. AN SSSR 178.6 (1968), 1255-1258; English translation in: Soviet Math. Dokl. 9.1 (1968), 281-284. MR 0225925
Reference: [Pn] Pontryagin L.S.: Topological Groups.Princeton Univ. Press, Princeton, NJ, 1939. Zbl 0882.01025
Reference: [RD] Roelcke W., Dierolf S.: Uniform Structures on Topological Groups and Their Quotients.McGraw-Hill, New York, 1981. Zbl 0489.22001, MR 0644485
Reference: [U] Uspenskiĭ V.V.: Real-valued measurable cardinals and sequentially continuous homomorphisms.preprint, December 1993. MR 1234282
Reference: [Vn] Vaughan J.E.: Countably compact spaces and sequentially compact spaces.in: Handbook of Set-theoretical Topology, K. Kunen and J.E. Vaughan eds., North Holland, 1984, pp.569-602. MR 0776631
Reference: [Vs] Varopoulos N.T.: A theorem on the continuity of homomorphisms of locally compact groups.Proc. Cambridge Phil. Soc. 60 (1964), 449-463. Zbl 0121.03704, MR 0162880
Reference: [Wh] Wheeler R.F.: A survey on Baire measures and strict topologies.Exp. Math. 2 (1983), 97-190. MR 0710569
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-4_9.pdf 288.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo