[1] Bandt C., Keller K.: 
Self-similar sets 2. A simple approach to the topological structure of fractals. Math. Nachr. 145 (1991), 27-39. 
MR 1138368 | 
Zbl 0824.28007[2] Bandt C., Keller K.: 
Symbolic dynamics for angle-doubling on the circle, I. The topology of locally connected Julia sets. in: Ergodic Theory and Related Topics (U. Krengel, K. Richter, V. Warstat, eds.), Lecture Notes in Math. 1514, Springer, 1992, pp.1-23. 
MR 1179168 | 
Zbl 0768.58013[3] Bandt C., Keller K.: 
Symbolic dynamics for angle-doubling on the circle, II. Symbolic description of the abstract Mandelbrot set. Nonlinearity 6 (1993), 377-392. 
MR 1223739 | 
Zbl 0785.58021[5] Branner B.: 
The Mandelbrot set. Proc. Symp. Appl. Math. 39 (1989), 75-105. 
MR 1010237[7] Douady A.: 
Descriptions of compact sets in $C$. in: Topological Methods in Modern Mathematics, Publish or Perish 1993, pp.429-465. 
MR 1215973[8] Douady A., Hubbard J.: 
Étude dynamique des polynômes complexes. Publications Mathématiques d'Orsay 84-02 (1984) (première partie) and 85-02 (1985) (deuxième partie). 
Zbl 0571.30026[9] Douady A., Hubbard J.: 
On the dynamics of polynomial-like mappings. Ann. Sci. Ecole Norm. Sup. (4) 18 (1985), 287-343. 
MR 0816367 | 
Zbl 0587.30028[10] Goldberg L., Milnor J.: 
Fixed points of polynomial maps I/II. Ann. Scient. Ec. Norm. Sup., $4^e$ série, t.25/26 (1992/1993). 
MR 1209913[11] Hubbard J.H.: 
Local connectivity of Julia sets and bifurcation loci: Three Theorems of J.-C. Yoccoz. in: Topological Methods in Modern Mathematics, Publish or Perish 1993, pp.467-511. 
MR 1215974 | 
Zbl 0797.58049[12] Keller K.: 
The abstract Mandelbrot set - an atlas of abstract Julia sets. in: Topology, Measures, and Fractals (C. Bandt, J. Flachsmeyer, H. Haase, eds.), Akademie Verlag, Berlin, 1992, pp.76-81. 
MR 1226281 | 
Zbl 0795.58032[13] Keller K.: 
Symbolic dynamics for angle-doubling on the circle, III. Sturmian sequences and the quadratic map. Ergod. Th. and Dynam. Sys. 14 (1994), 787-805. 
MR 1304142 | 
Zbl 0830.58011[14] Keller K.: 
Symbolic dynamics for angle-doubling on the circle, IV. Equivalence of abstract Julia sets. Atti del Seminario dell'Universita de Modenà XLII (1994), 301-321. 
MR 1310452 | 
Zbl 0830.58012[15] Keller K.: Invarante Faktoren, Juliaäquivalenzen und die abstrakte Mandelbrotmenge. Habilitationsschrift, Universität Greifswald, 1996.
[16] Keller K.: 
Julia equivalences and abstract Siegel disks. submitted. 
Zbl 0945.30024[17] Lau E., Schleicher D.: Internal addresses in the Mandelbrot set and irreducibility of polynomials. Stony Brook IMS preprint, 1994/19.
[18] Lavaurs P.: 
Une déscription combinatoire de l'involution définie par M sur les rationnels à dénominateur impair. C.R. Acad. Sc. Paris Série I, t.303 (1986), 143-146. 
MR 0853606 | 
Zbl 0663.58018[19] Lyubich M.Yu.: Geometry of quadratic polynomials: Moduli, rigidity, and local connectivity. Stony Brook IMS preprint 1993/9.
[20] Milnor J.: 
Dynamics on one complex variable: Introductory Lectures. preprint, Stony Brook, 1990. 
MR 1721240[21] Milnor J.: 
Local Connectivity of Julia sets: Expository Lectures. preprint, Stony Brook, 1992. 
MR 1765085 | 
Zbl 1107.37305[22] Milnor J.: 
Errata for `Local Connectivity of Julia sets: Expository Lectures'. preprint, Stony Brook, 1992. 
MR 1765085[23] Milnor J.: 
Periodic orbits, external rays and the Mandelbrot set; An expository account. preprint 1995, Lecture Notes in Mathematics 1342 (1988), 465-563. 
MR 1755445[24] McMullen C.: 
Complex Dynamics and Renormalization. Annals of Mathematics Studies, Princeton University Press, Princeton, 1994. 
MR 1312365 | 
Zbl 0822.30002[25] McMullen C.: 
Frontiers in complex dynamics. Bull. Amer. Math. Soc. (N.S.) 31 (1994), 155-172. 
MR 1260523 | 
Zbl 0807.30013[26] Penrose C.S.: On quotients of the shift associated with dendrite Julia sets of quadratic polynomials. PhD thesis, University of Warwick, 1990.
[27] Penrose C.S.: Quotients of the shift associated with dendrite Julia sets. preprint, London, 1994.
[28] Schleicher D.: Internal Addresses in the Mandelbrot set and irreducibility of polynomials. PhD thesis, Cornell University, 1994.
[29] Schleicher D.: The structure of the Mandelbrot set. preprint, München, 1995.
[30] Schleicher D.: The dynamics of iterated polynomials. in preparation.
[32] Thurston W.P.: On the combinatorics and dynamics of iterated rational maps. preprint, Princeton, 1985.