Previous |  Up |  Next

Article

Title: On bounds of the drag for Stokes flow around a body without thickness (English)
Author: Bresch, Didier
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 4
Year: 1997
Pages: 665-679
.
Category: math
.
Summary: This paper is devoted to lower and upper bounds of the hydrodynamical drag $T$ for a body in a Stokes flow. We obtain the upper bound since the solution for a flow in an annulus and therefore the hydrodynamical drag can be explicitly derived. The lower bound is obtained by comparison to the Newtonian capacity of a set and with the help of a result due to J. Simon $\,[10]$. The chosen approach provides an interesting lower bound which is independent of the interior of the body. (English)
Keyword: Stokes flows
Keyword: hydrodynamical drag
Keyword: lower and upper bounds
MSC: 35Q35
MSC: 76D07
idZBL: Zbl 1042.76516
idMR: MR1603690
.
Date available: 2009-01-08T18:37:12Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118965
.
Reference: [1] Allaire G.: Homogénéisation des équations de Stokes et de Navier-Stokes.Thesis, Pierre et Marie Curie University, France, 1989.
Reference: [2] Bello J.A., Fernandez-Cara E., Lemoine J., Simon J.: The differentiability of the drag with respect to the variations of a lipschitz domain in Navier-Stokes flow.SIAM J. Control Optim. 35 2 (1997), 626-640. MR 1436642
Reference: [3] Cioranescu D., Murat F.: Un terme étrange venu d'ailleurs.Non linear partial differential equations and their applications, Collège de France Seminar, 2 et 3 ed. by H. Brezis and J.L. Lions, Research Notes in Mathematics 60 et 70, Pitman, London, 1982. Zbl 0498.35034
Reference: [4] Dautray R., Lions J.L.: Analyse mathématique et calcul numérique pour les Sciences et les Techniques (Chapitre II L'opérateur de Laplace).INSTN C.E.A., 1985.
Reference: [5] Gilbart D., Trudinger N.S.: Elliptic partial differential equation of second order.second edition, Springer Verlag, 1983. MR 0737190
Reference: [6] Godbillon C.: Eléments de Topologie Algébrique.Hermann Paris, Collection méthodes, 1971. Zbl 0907.55001, MR 0301725
Reference: [7] Heywood J.G.: On some paradoxes concerning two dimensional Stokes flow past an obstacle.Indiana University Mathematics Journal 24 5 (1974), 443-450. Zbl 0315.35075, MR 0410123
Reference: [8] Mossino J.: Inégalités Isopérimètriques et applications en physique.Travaux en cours, Hermann, éditeurs des Sciences et des Arts, Paris, 1992. Zbl 0537.35002, MR 0733257
Reference: [9] Sanchez-Hubert J., Sanchez-Palencia E.: Introduction aux méthodes asymptotiques et à l'homogénéisation.Masson, 1992.
Reference: [10] Simon J.: On a result due to L.A. Caffarelli and A. Friedman concerning the asymptotic behavior of a plasma.Non linear partial differential equations and their applications, Collège de France, Seminar volume IV, Research Notes in Mathematics, Pitman, London, 1983, pp.214-239. Zbl 0555.35045, MR 0716520
Reference: [11] Simon J.: Distributions à valeurs vectorielles.to appear.
Reference: [12] Stokes G.G.: On the effect of the internal friction of fluids on the motion of pendulums..Trans. Camb. Phil. Soc. 9 Part III (1851), 8-106.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-4_6.pdf 241.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo