Previous |  Up |  Next

Article

Title: Separation of $(n+1)$-families of sets in general position in $\bold R^n$ (English)
Author: Balaj, Mircea
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 4
Year: 1997
Pages: 743-748
.
Category: math
.
Summary: In this paper the main result in [1], concerning $(n+1)$-families of sets in general position in ${\bold R}^n$, is generalized. Finally we prove the following theorem: If $\{A_1,A_2,\dots,A_{n+1}\}$ is a family of compact convexly connected sets in general position in ${\bold R}^n$, then for each proper subset $I$ of $\{1,2,\dots,n+1\}$ the set of hyperplanes separating $\cup\{A_i: i\in I\}$ and $\cup\{A_j: j\in \overline{I}\}$ is homeomorphic to $S_n^+$. (English)
Keyword: family of sets in general position
Keyword: convexly connected sets
Keyword: Fan-Glicksberg-Kakutani fixed point theorem
MSC: 47H10
MSC: 52A37
idZBL: Zbl 0946.52002
idMR: MR1603706
.
Date available: 2009-01-08T18:37:39Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118969
.
Reference: [1] Balaj M.: $(n{+}1)$-families of sets in general position.Beitrage zur Algebra und Geometrie 37 (1996), 67-74. Zbl 0856.52007, MR 1407806
Reference: [2] Fan K.: Fixed-point and minimax theorems in locally convex topological linear spaces.Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121-126. Zbl 0047.35103, MR 0047317
Reference: [3] Gaal S.A.: Point Set Topology.Academic Press, New York and London, 1964. Zbl 0124.15401, MR 0171253
Reference: [4] Glicksberg I.L.: A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points.Proc. Amer. Math. Soc. 3 (1952), 170-174. Zbl 0163.38301, MR 0046638
Reference: [5] Hanner O., Radström H.: A generalization of a theorem of Fenchel.Proc. Amer. Math. Soc. 2 (1951), 589-593. MR 0044142
Reference: [6] Singer I.: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces (in Romanian).Edit. Academiei Române, Bucureşti, 1967. MR 0235368
Reference: [7] Valentine F.A.: The dual cone and Helly type theorems.in: Convexity, V.L. Klee ed., Proc. Sympos. Pure Math. 7, Amer. Math. Soc., 1963, pp.473-493. Zbl 0138.43204, MR 0157285
Reference: [8] Valentine F.A.: Konvexe Mengen.Manheim, 1968. Zbl 0157.52501, MR 0226495
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-4_10.pdf 195.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo