Previous |  Up |  Next

Article

Title: Generalized linearly ordered spaces and weak pseudocompactness (English)
Author: Okunev, O.
Author: Tamariz-Mascarúa, A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 4
Year: 1997
Pages: 775-790
.
Category: math
.
Summary: A space $X$ is {\it truly weakly pseudocompact} if $X$ is either weakly pseudocompact or Lindelöf locally compact. We prove that if $X$ is a generalized linearly ordered space, and either (i) each proper open interval in $X$ is truly weakly pseudocompact, or (ii) $X$ is paracompact and each point of $X$ has a truly weakly pseudocompact neighborhood, then $X$ is truly weakly pseudocompact. We also answer a question about weakly pseudocompact spaces posed by F. Eckertson in [Eck]. (English)
Keyword: weakly pseudocompact spaces
Keyword: GLOTS
Keyword: compactifications
MSC: 54D35
MSC: 54F05
idZBL: Zbl 0937.54021
idMR: MR1603718
.
Date available: 2009-01-08T18:37:53Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118972
.
Reference: [Eck] Eckertson F.: Sums, products and mappings of weakly pseudocompact spaces.Topol. Appl. 72 (1996), 149-157. Zbl 0857.54022, MR 1404273
Reference: [Eng] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [GG] García-Ferreira S., García-Máynez A.S.: On weakly pseudocompact spaces.Houston J. Math. 20 (1994), 145-159. MR 1272568
Reference: [EO] Eckertson F., Ohta H.: Weak pseudocompactness and zero sets in pseudocompact spaces.manuscript. Zbl 0876.54013
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-4_13.pdf 274.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo