Previous |  Up |  Next

Article

Title: On monotone nonlinear variational inequality problems (English)
Author: Verma, Ram U.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 1
Year: 1998
Pages: 91-98
.
Category: math
.
Summary: The solvability of a class of monotone nonlinear variational inequality problems in a reflexive Banach space setting is presented. (English)
Keyword: nonlinear varionational inequality problems
Keyword: $p$-monotone and $p$-Lipschitzian operators
Keyword: KKM mappings
MSC: 47H15
MSC: 47H19
MSC: 47J05
MSC: 49J40
idZBL: Zbl 0937.47060
idMR: MR1622982
.
Date available: 2009-01-08T18:39:15Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118988
.
Reference: [1] Browder F.E.: On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces.Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 419-425. Zbl 0143.36902, MR 0203533
Reference: [2] Browder F.E., Petryshyn W.V.: Construction of fixed points of nonlinear mappings in Hilbert spaces.J. Math. Anal. Appl. 20 (1967), 197-228. MR 0217658
Reference: [3] Fan K.: Some properties of convex sets related to fixed point theorems.Math. Annal. 266 (1984), 519-537. Zbl 0515.47029, MR 0735533
Reference: [4] Glowinski R.: Numerical Methods for Nonlinear Variational Problems.Springer-Verlag, New York, 1984. Zbl 1139.65050, MR 0737005
Reference: [5] Goeleven D., Motreanu D.: Eigenvalue and dynamic problems for variational and hemivariational inequalities.Comm. Appl. Nonlinear Anal. 3 (4) (1996), 1-21. Zbl 0911.49009, MR 1420282
Reference: [6] Noor M.A.: Mixed variational inequalities.Appl. Math. Lett. 3 (1990), 73-75. Zbl 0714.49014, MR 1052253
Reference: [7] Noor M.A.: General auxiliary principle for variational inequalities.PanAmerican Math. J. 4 (1) (1994), 27-44. Zbl 0845.49005, MR 1259947
Reference: [8] Siddiqi A.H., Ansari Q.H., Kazmi K.R.: On nonlinear variational inequalities.Indian J. Pure Appl. Math. 25 (9) (1994), 969-973. MR 1294066
Reference: [9] Szulkin A.: Positive solutions of variational inequalities: A degree-theoretic approach.J. Diff. Equ. 57 (1985), 90-111. Zbl 0535.35029, MR 0788424
Reference: [10] Verma R.U.: Iterative algorithms for variational inequalities and associated nonlinear equations involving relaxed Lipschitz operators.Appl. Math. Lett. 9 (4) (1996), 61-63. Zbl 0864.65039, MR 1415453
Reference: [11] Verma R.U.: Generalized variational inequalities involving multivalued relaxed monotone operators.Appl. Math. Lett., to appear. Zbl 0960.49509, MR 1458162
Reference: [12] Verma R.U.: Nonlinear variational and constrained hemi-variational inequalities involving relaxed operators.Z. Angew. Math. Mech. 77 (1997), 387-391. MR 1455359
Reference: [13] Yao J.-C.: Applications of variational inequalities to nonlinear analysis.Appl. Math. Lett. 4 (1991), 89-92. Zbl 0734.49003
Reference: [14] Zeidler E.: Nonlinear Functional Analysis and its Applications IV.Springer-Verlag, New York, 1988. Zbl 0648.47036, MR 0932255
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-1_10.pdf 188.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo