[1] Argyros S., Mercourakis S.: 
On weakly Lindelöf Banach spaces. Rocky Mountain J. Math. 23 (1993), 395-446. 
MR 1226181 | 
Zbl 0797.46009[2] Diestel J.: 
Sequences and Series in Banach Spaces. Springer-Verlag (1984), New York-Berlin. 
MR 0737004[3] Deville R., Godefroy G., Zizler V.: 
Smoothness and Renormings in Banach Spaces. Longman Scientific & Technical Essex (1993). 
MR 1211634 | 
Zbl 0782.46019[4] Fabian M.: 
Gâteaux Differentiability of Convex Functions and Topology - Weak Asplund Spaces. John Wiley and Sons, Interscience (1997). 
MR 1461271 | 
Zbl 0883.46011[5] Finet C., Godefroy G.: 
Biorthogonal systems and big quotient spaces. Contemporary Mathematics 85 (1989), 87-110. 
MR 0983383 | 
Zbl 0684.46016[6] Godun B.V.: 
Biortogonal'nyje sistemy v prostranstvach ogranichennyh funkcij. Dokl. Akad. Nauk. Ukrain. SSR, Ser. A, n. 3 (1983), 7-9. 
MR 0698870[7] Godun B.V.: 
On complete biorthogonal systems in a Banach space. Funkcional. Anal. i Prilozhen. 17 (1) 1-7 (1983). 
MR 0695091[8] Godun B.V., Kadec M.I.: 
Banach spaces without complete minimal system. Functional Anal. and Appl. 14 (1980), 301-302. 
MR 0595733[9] Habala P., Hájek P., Zizler V.: Introduction to Banach spaces II. Lecture Notes, Matfyzpress Prague (1996).
[10] Haydon R.: 
On Banach spaces which contain $\ell^1(\tau)$ and types of measures on compact spaces. Israel J. Math 28 (1997), 313-324. 
MR 0511799[11] Hewitt E., Ross K.A.: 
Abstract Harmonic Analysis, Vol I (1963), Vol II (1970). Springer-Verlag Berlin, New York. 
MR 0551496[12] Negrepontis S.: 
Banach spaces and Topology. Handbook of Set-Theoretic Topology (1984), North-Holland Amsterdam, New York, Oxford, Tokyo 1045-1142. 
MR 0776642 | 
Zbl 0584.46007[13] Phelps R.R.: 
Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics 1364, Springer-Verlag Berlin, Heidelberg (1993). 
MR 1238715 | 
Zbl 0921.46039[14] Plichko A.N.: 
Banach space without a fundamental biorthogonal system. Soviet Math. Dokl. 22 (1980), 450-453. 
Zbl 0513.46015[15] Rainwater J.: 
A class of null sets associated with convex functions on Banach spaces. Bull. Austral. Math. Soc. 42 (1990), 315-322. 
MR 1073653 | 
Zbl 0724.46017[16] Rosenthal H.P.: 
On quasi-complemented subspaces, with an appendix on compactness of operators from $L^p(\mu)$ to $L^r(\nu)$. J. Functional Analysis 4 (1969), 176-214. 
MR 0250036[17] Rudin W.: 
Fourier analysis on groups. Interscience Publishers New York (1967). 
MR 0152834[18] Talagrand M.: 
Deux exemples de fonctions convexes. C. R. Acad. Sci. Paris, Serie A - 461 (1979), 288 461-464. 
MR 0527697 | 
Zbl 0398.46037[19] Valdivia M.: 
Simultaneous resolutions of the identity operator in normed spaces. Collect. Math. (1991), 42 265-284. 
MR 1203185 | 
Zbl 0788.47024[20] Zajíček L.: 
A note on partial derivatives of convex functions. Comment. Math. Univ. Carolinae 24 (1983), 89-91. 
MR 0703927