Previous |  Up |  Next

Article

Title: Convex functions with non-Borel set of Gâteaux differentiability points (English)
Author: Holický, P.
Author: Šmídek, M.
Author: Zajíček, L.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 3
Year: 1998
Pages: 469-482
.
Category: math
.
Summary: We show that on every nonseparable Banach space which has a fundamental system (e.g\. on every nonseparable weakly compactly generated space, in particular on every nonseparable Hilbert space) there is a convex continuous function $f$ such that the set of its G\^ateaux differentiability points is not Borel. Thereby we answer a question of J. Rainwater (1990) and extend, in the same time, a former result of M. Talagrand (1979), who gave an example of such a function $f$ on $\ell^1(\frak c)$. (English)
Keyword: convex function
Keyword: G\^ateaux differentiability points
Keyword: Borel set
Keyword: fundamental system
MSC: 46B20
MSC: 46B26
MSC: 46G05
idZBL: Zbl 0970.46026
idMR: MR1666778
.
Date available: 2009-01-08T18:45:27Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119025
.
Reference: [1] Argyros S., Mercourakis S.: On weakly Lindelöf Banach spaces.Rocky Mountain J. Math. 23 (1993), 395-446. Zbl 0797.46009, MR 1226181
Reference: [2] Diestel J.: Sequences and Series in Banach Spaces.Springer-Verlag (1984), New York-Berlin. MR 0737004
Reference: [3] Deville R., Godefroy G., Zizler V.: Smoothness and Renormings in Banach Spaces.Longman Scientific & Technical Essex (1993). Zbl 0782.46019, MR 1211634
Reference: [4] Fabian M.: Gâteaux Differentiability of Convex Functions and Topology - Weak Asplund Spaces.John Wiley and Sons, Interscience (1997). Zbl 0883.46011, MR 1461271
Reference: [5] Finet C., Godefroy G.: Biorthogonal systems and big quotient spaces.Contemporary Mathematics 85 (1989), 87-110. Zbl 0684.46016, MR 0983383
Reference: [6] Godun B.V.: Biortogonal'nyje sistemy v prostranstvach ogranichennyh funkcij.Dokl. Akad. Nauk. Ukrain. SSR, Ser. A, n. 3 (1983), 7-9. MR 0698870
Reference: [7] Godun B.V.: On complete biorthogonal systems in a Banach space.Funkcional. Anal. i Prilozhen. 17 (1) 1-7 (1983). MR 0695091
Reference: [8] Godun B.V., Kadec M.I.: Banach spaces without complete minimal system.Functional Anal. and Appl. 14 (1980), 301-302. MR 0595733
Reference: [9] Habala P., Hájek P., Zizler V.: Introduction to Banach spaces II.Lecture Notes, Matfyzpress Prague (1996).
Reference: [10] Haydon R.: On Banach spaces which contain $\ell^1(\tau)$ and types of measures on compact spaces.Israel J. Math 28 (1997), 313-324. MR 0511799
Reference: [11] Hewitt E., Ross K.A.: Abstract Harmonic Analysis, Vol I (1963), Vol II (1970).Springer-Verlag Berlin, New York. MR 0551496
Reference: [12] Negrepontis S.: Banach spaces and Topology.Handbook of Set-Theoretic Topology (1984), North-Holland Amsterdam, New York, Oxford, Tokyo 1045-1142. Zbl 0584.46007, MR 0776642
Reference: [13] Phelps R.R.: Convex Functions, Monotone Operators and Differentiability.Lecture Notes in Mathematics 1364, Springer-Verlag Berlin, Heidelberg (1993). Zbl 0921.46039, MR 1238715
Reference: [14] Plichko A.N.: Banach space without a fundamental biorthogonal system.Soviet Math. Dokl. 22 (1980), 450-453. Zbl 0513.46015
Reference: [15] Rainwater J.: A class of null sets associated with convex functions on Banach spaces.Bull. Austral. Math. Soc. 42 (1990), 315-322. Zbl 0724.46017, MR 1073653
Reference: [16] Rosenthal H.P.: On quasi-complemented subspaces, with an appendix on compactness of operators from $L^p(\mu)$ to $L^r(\nu)$.J. Functional Analysis 4 (1969), 176-214. MR 0250036
Reference: [17] Rudin W.: Fourier analysis on groups.Interscience Publishers New York (1967). MR 0152834
Reference: [18] Talagrand M.: Deux exemples de fonctions convexes.C. R. Acad. Sci. Paris, Serie A - 461 (1979), 288 461-464. Zbl 0398.46037, MR 0527697
Reference: [19] Valdivia M.: Simultaneous resolutions of the identity operator in normed spaces.Collect. Math. (1991), 42 265-284. Zbl 0788.47024, MR 1203185
Reference: [20] Zajíček L.: A note on partial derivatives of convex functions.Comment. Math. Univ. Carolinae 24 (1983), 89-91. MR 0703927
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-3_4.pdf 275.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo