Previous |  Up |  Next

Article

Title: Weak Krull-Schmidt theorem (English)
Author: Bican, Ladislav
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 4
Year: 1998
Pages: 633-643
.
Category: math
.
Summary: Recently, A. Facchini [3] showed that the classical Krull-Schmidt theorem fails for serial modules of finite Goldie dimension and he proved a weak version of this theorem within this class. In this remark we shall build this theory axiomatically and then we apply the results obtained to a class of some modules that are torsionfree with respect to a given hereditary torsion theory. As a special case we obtain that the weak Krull-Schmidt theorem holds for the class of modules that are both uniform and co-uniform. A simple example shows that this generalizes the result of [3] mentioned above. (English)
Keyword: monogeny class
Keyword: epigeny class
Keyword: weak Krull-Schmidt theorem
Keyword: hereditary torsion theory
Keyword: uniform module
Keyword: co-uniform module
MSC: 16D70
MSC: 16S90
idZBL: Zbl 1060.16501
idMR: MR1715454
.
Date available: 2009-01-08T18:47:07Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119040
.
Reference: [1] Bican L., Kepka T., Němec P.: Rings, Modules and Preradicals.Marcel Dekker New York, Longman Scientific Publishing, London (1982). MR 0655412
Reference: [2] Bican L., Torrecillas B.: QTAG torsionfree modules.Comment. Math. Univ. Carolinae 33 (1994), 1-20. MR 1173740
Reference: [3] Facchini A.: Krull-Schmidt fails for serial modules.Trans. Amer. Math. Soc. 348 (1996), 4561-4575. Zbl 0868.16003, MR 1376546
Reference: [4] Golan J.S.: Torsion Theories.Pitman Monographs and Surveys in Pure and Appl. Math. Longman Scientific Publishing, London (1986). Zbl 0657.16017, MR 0880019
Reference: [5] Herbera D., Shamsuddin A.: Modules with semi-local endomorphism rings.Proc. Amer. Math. Soc. 123 (1995), 3593-3600. MR 1277114
Reference: [6] Stenström B.: Rings of Quotients.Springer Berlin (1975). MR 0389953
Reference: [7] Varadarajan K.: Dual Goldie dimension.Comm. Algebra 7 (1979), 565-610. Zbl 0487.16020, MR 0524269
Reference: [8] Facchini A.: Module Theory. Endomorphism rings and direct decompositions in some classes of modules (Lecture Notes).to appear. MR 1634015
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-4_1.pdf 238.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo