Previous |  Up |  Next

Article

Title: Representation theorem for convex effect algebras (English)
Author: Gudder, S.
Author: Pulmannová, S.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 4
Year: 1998
Pages: 645-659
.
Category: math
.
Summary: Effect algebras have important applications in the foundations of quantum mechanics and in fuzzy probability theory. An effect algebra that possesses a convex structure is called a convex effect algebra. Our main result shows that any convex effect algebra admits a representation as a generating initial interval of an ordered linear space. This result is analogous to a classical representation theorem for convex structures due to M.H. Stone. (English)
Keyword: effect algebras
Keyword: convex structures
Keyword: ordered linear spaces
MSC: 46A40
MSC: 46N50
MSC: 52A01
MSC: 81P10
MSC: 81R10
MSC: 82B03
idZBL: Zbl 1060.81504
idMR: MR1715455
.
Date available: 2009-01-08T18:47:12Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119041
.
Reference: [1] Beltrametti E.G., Bugajski S.: A classical extension of quantum mechanics.J. Phys. A: Math. Gen. 28 (1995), 3329-3343. Zbl 0859.46049, MR 1344371
Reference: [2] Beltrametti E.G., Bugajski S.: Quantum observables in classical frameworks.Internat. J. Theoret. Phys. 34 (1995), 1221-1229. Zbl 0850.81019, MR 1353665
Reference: [3] Beltrametti E.G., Bugajski S.: Effect algebras and statistical physical theories.to appear. Zbl 0874.06009, MR 1449546
Reference: [4] Bugajski S.: Fundamentals of fuzzy probability theory.Internat. J. Theoret. Phys. 35 (1996), 2229-2244. Zbl 0872.60003, MR 1423402
Reference: [5] Bugajski S., Hellwig K.-E., Stulpe W.: On fuzzy random variables and statistical maps.Rep. Math. Phys., to appear. Zbl 1026.60501, MR 1617902
Reference: [6] Busch P., Grabowski M., Lahti P.: Operational Quantum Physics.Springer-Verlag, Berlin, 1995. Zbl 0863.60106, MR 1356220
Reference: [7] Busch P., Lahti P., Mittlestaedt P.: The Quantum Theory of Measurement.Springer-Verlag, Berlin, 1991. MR 1176754
Reference: [8] Cattaneo G., Nisticò G.: Complete effect-preparation structures: attempt of a unification of two different approaches to axiomatic quantum mechanics.Nuovo Cimento 90B (1985), 161-175. MR 0827914
Reference: [9] Davies E.B.: Quantum Theory of Open Systems.Academic Press, London, 1976. Zbl 0388.46044, MR 0489429
Reference: [10] Dvurečenskij A.: Tensor products of difference posets.Trans. Amer. Math. Soc. 147 (1995), 1043-1057. MR 1249874
Reference: [11] Dvurečenskij A., Pulmannová S.: Difference posets, effects, and quantum measurements.Internat. J. Theoret. Phys. 33 (1994), 819-850. MR 1286161
Reference: [12] Evans R.: The Perception of Color.John Wiley, New York, 1974.
Reference: [13] Foulis D., Bennett M.K.: Effect algebras and unsharp quantum logics.Found. Phys. 24 (1994), 1331-1352. MR 1304942
Reference: [14] Foulis D., Bennett M.K.: Interval algebras and unsharp quantum logics.to appear.
Reference: [15] Giuntini R., Greuling H.: Toward a formal language for unsharp properties.Found. Phys. 19 (1989), 931-945. MR 1013913
Reference: [16] Gudder S.: Convexity and mixtures.SIAM Review 19 (1977), 221-240. Zbl 0354.52001, MR 0433327
Reference: [17] Gudder S.: Convex structures and operational quantum mechanics.Comm. Math. Phys. 29 (1973), 249-264. MR 0342092
Reference: [18] Gudder S.: Fuzzy probability theory.Demonstratio Math., to appear. Zbl 0984.60001, MR 1623780
Reference: [19] Holevo A.S.: Probabilistic and Statistical Aspects of Quantum Theory.North-Holland, Amsterdam, 1982. Zbl 0497.46053, MR 0681693
Reference: [20] Kôpka F.: D-posets and fuzzy sets.Tatra Mountains Math. Publ. 1 (1992), 83-87. MR 1230466
Reference: [21] Kôpka F., Chovanec F.: D-posets.Math. Slovaca 44 (1994), 21-34. MR 1290269
Reference: [22] Kraus K.: States, Effects, and Operations.Springer-Verlag, Berlin, 1983. Zbl 0545.46049, MR 0725167
Reference: [23] Ludwig G.: Foundations of Quantum Mechanics.Springer-Verlag, Berlin, 1983. Zbl 0574.46057, MR 0690770
Reference: [24] Stone M.H.: Postulates for the barycentric calculus.Ann. Math. 29 (1949), 25-30. Zbl 0037.25002, MR 0036014
Reference: [25] Thrall R.M., Coombs C.H., Davis R.L.: Decision Processes.John Wiley, New York, 1954. Zbl 0057.35603, MR 0066616
Reference: [26] von Neumann J., Morgenstern O.: Theory of Games and Economic Behavior.Princeton University Press, Princeton, New Jersey, 1944. Zbl 1112.91002, MR 0011937
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-4_2.pdf 232.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo