Previous |  Up |  Next

Article

Title: An intrinsic definition of the Colombeau generalized functions (English)
Author: Jelínek, Jiří
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 1
Year: 1999
Pages: 71-95
.
Category: math
.
Summary: A slight modification of the definition of the Colombeau generalized functions allows to have a canonical embedding of the space of the distributions into the space of the generalized functions on a \text{$\Cal C^\infty $} manifold. The previous attempt in [5] is corrected, several equivalent definitions are presented. (English)
Keyword: Colombeau generalized function
Keyword: distribution
Keyword: canonical embedding
Keyword: manifold
MSC: 46F05
MSC: 46F30
MSC: 46G05
idZBL: Zbl 1060.46513
idMR: MR1715203
.
Date available: 2009-01-08T18:49:49Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119064
.
Reference: [1] Biagioni H.A.: A Nonlinear Theory of Generalized Functions.Lecture Notes in Math. 1421, Springer-Verlag (1990). Zbl 0694.46032, MR 1049623
Reference: [2] Colombeau J.F.: Differential Calculus and Holomorphy.North Holland Math. Studies 64 (1982). Zbl 0506.46001, MR 0671252
Reference: [3] Colombeau J.F.: New Generalized Functions and Multiplication of Distributions.North Holland Math. Studies 84 (1984). Zbl 0532.46019, MR 0738781
Reference: [4] Colombeau J.F.: Elementary Introduction to New Generalized Functions.North Holland Math. Studies 113 (1985). Zbl 0584.46024, MR 0808961
Reference: [5] Colombeau J.F., Meril A.: Generalized functions and multiplication of distributions on $\Cal C^\infty $ manifolds.J. Math. Anal. Appl. 186 (1994), 357-364. MR 1292997
Reference: [6] Dapić and Pilipović: Microlocal analysis of Colombeau's generalized functions on a manifold.Indag. Math. N.S. 7.3 (1996), 293-309. MR 1621385
Reference: [7] Engelking R.: Outline of General Topology.North-Holland Publishing Company, Amsterdam (1968), 388. Zbl 0157.53001, MR 0230273
Reference: [8] Hörmander L.: The Analysis of Linear Partial Differential Operators I, Distribution Theory and Fourier Analysis.().
Reference: [9] Egorov Yu.V.: On the theory of generalized functions (in Russian).Russian Math. Surveys 45.5 (1990), 1-49. MR 1084986
Reference: [10] Itano M.: On fixation and reciprocal images of currents.J. Sci. Hiroshima Univ. A-I, 31.2 (1967). MR 0231195
Reference: [11] Jelínek J.: Characterization of the Colombeau product of distributions.Comment. Math. Univ. Carolinae 27.2 (1986). MR 0857556
Reference: [12] Pietsch A.: Nukleare Lokalkonvexe Räume.Akademie-Verlag, Berlin. Zbl 0184.14602, MR 0181888
Reference: [13] de Rham G.: Variétés Différentiables.Paris, Hermann (1955). Zbl 0065.32401
Reference: [14] Robertson + Robertson: Topological Vector Spaces.Cambridge Univ. Press, Cambridge (1964). MR 0162118
Reference: [15] Roever J.W., Damsma M.: Colombeau algebras on a $\Cal C^\infty $-manifold.Indag. Math. N.S. 2.3 (1991), 341-358. MR 1149687
Reference: [16] Schwartz L.: Théorie des Distributions.Paris, Hermann (1966). Zbl 0149.09501, MR 0209834
Reference: [17] Yamamuro S.: Differential Calculus in Topological Linear Spaces.Lecture Notes in Math. 374, Springer-Verlag (1974). Zbl 0276.58001, MR 0488118
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-1_6.pdf 351.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo